About The Pennsylvania State University

The Pennsylvania State University

Articles by The Pennsylvania State University

Comprehensive phenotypic characterization and genetic distinction of distinct goosegrass (Eleusine indica L. Gaertn.) ecotypes

Published on: 4th October, 2019

OCLC Number/Unique Identifier: 8282461318

Goosegrass (Eleusine indica L. Gaertn.) is a troublesome weed in turfgrass systems throughout the world. The development of herbicide resistant ecotypes has occurred to multiple modes of action. Goosegrass is a prolific seed producer (~50,000 per plant), fast growing and diverse weed. Such growing attributes make it essential to have a better understanding of the genetic diversity of various ecotypes. The objectives of this study were to determine if morphologically distinct goosegrass ecotypes collected in Florida were phenotypically distinct and genetically different. Phenotypically, the goosegrass ecotypes can be classified as follows; dwarf, intermediate 1 (int_I), intermediate 2 (int_II) and wild. The dwarf had the least seedheads followed by the wild ecotype; 5 and 17 respectively, while int_I and int_II had highest number of seedheads; 22 and 34 respectively. The dwarf ecotype had lowest height of 6 cm and the wild ecotype had highest height of 36 cm. Dwarf and int_II ecotypes had shortest internode length of 0.2 cm and 1 cm, respectively, while the wild ecotype had longest internode length of 7 cm. The dwarf ecotype had lowest number of racemes per plant of 1, while the wild ecotype had highest number of racemes per plant of 7. Total biomass was lowest for the dwarf and int_II ecotype; 0.7 g and 1.5 g, respectively, and total biomass was highest for the wild ecotype at 5 g. Gene sequencing of two rice (Oryza) gene sequences (accession AP014964 (gene A) and AP014965 (gene B)) and subsequent phylogenetic analysis suggest the ecotypes are genetically different. Three single nucleotide polymorphisms (SNP) of interest were discovered indicating allelic differences between ecotypes.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

A quantum mechanical model for hole transport through DNA: predicting conditions for oscillatory/non-oscillatory behavior

Published on: 9th March, 2020

OCLC Number/Unique Identifier: 8558600875

A quantum mechanical model that considers tunneling and inelastic scattering has been applied to explain the hole transfer reaction from a G (Guanine) base to a GGG base cluster through a barrier of Adenine bases, (A)n (n = 1-16). For n = 1, the ratio of tunneling to inelastic scattering is about 6, which is sharply decreased to around 0.23 and 5.23 × 10-8 for n = 4 and 16 respectively, suggesting dominance of inelastic scattering for n ≥ 4. As in experiment, the calculated product yield ratios (PGGG) exhibit a strong distance dependence for n < 4, and a weak distance dependence for n ≥ 4. We also predict conditions under which oscillatory or non-oscillatory charge transfer (CT) yield are expected.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?