Review Article

Photocatalytic degradation of organic pollutants in the presence of selected transition metal nanoparticles: review

Tigabu Bekele Mekonnen*

Published: 29 September, 2022 | Volume 6 - Issue 3 | Pages: 115-125

Photocatalysis has attracted a lot of attention in recent years due to its potential in solving energy and environmental issues. Efficient light absorption and charge separation are two of the key factors for the exploration of high-performance photocatalytic systems, which are generally difficult to obtain from a single photocatalyst. The combination of various materials to form heterojunctions provides an effective way to better harvest solar energy and facilitate charge separation and transfer, thus enhancing photocatalytic activity and stability. This review concisely summarizes the recent development of visible light responsive heterojunctions, including the preparation and performance of semiconductor/semiconductor junctions and semiconductor/metal junctions and their mechanism for enhancing light harvesting and charge separation/transfer. In this regard, this review presents some unitary, binary and ternary CeO2 photocatalysts used for the degradation of organic pollutants. We expect this review to provide the type of guidelines for readers to gain a clear picture of nanotechnology and the fabrication and application of different types of heterostructured photocatalysts.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001084 Cite this Article Read Full Article PDF


  1. Rashed MN, El-Amin AA. Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. International Journal of Physical Sciences. 2007; 2(3):073-081.
  2. Pelizzetti E, Serpone N eds. Homogeneous and heterogeneous photocatalysis. Springer Science & Business Media. 2012; 174
  3. Vakiti RK. Hydro/solvothermal synthesis, structures and properties of metal-organic frameworks based on S-block metals. 2012.
  4. Agarwal K. Removal of Dyes Using Conventional and Advanced Adsorbents Advanced Adsorbents (Doctoral dissertation). 2013.
  5. Endashaw M, Girma T. Review on the removal of dyes by photodegradation using metal-organic frameworks under light irradiation. Chemistry and Materials Research. 2020; 12(1):14-21.
  6. Salih FM. Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J Appl Microbiol. 2002;92(5):920-6. doi: 10.1046/j.1365-2672.2002.01601.x. PMID: 11972697.
  7. Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental. 2004; 47(4): 219-256.
  8. García-Montaño J, Pérez-Estrada L, Oller I, Maldonado MI, Torrades F, Peral J. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. Journal of Photochemistry and Photobiology A: Chemistry. 2008; 195(2-3):205-214.
  9. Ozin GA, Cademartiri L. Nanochemistry: what is next? Small. 2009 Jun;5(11):1240-4. doi: 10.1002/smll.200900113. PMID: 19404992.
  10. Kausar A, Anwar S Graphite filler-based nanocomposites with thermoplastic polymers: a review. Polymer-Plastics Technology and Engineering. 2018; 57(6):565-580.
  11. Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat Toxicol. 2015 Jan;158:1-13. doi: 10.1016/j.aquatox.2014.10.014. Epub 2014 Nov 3. PMID: 25461740.
  12. Caruso RA, Antonietti M. Sol-gel nanocoating: an approach to the preparation of structured materials. Chemistry of Materials. 2001; 13(10):3272-3282.
  13. Seger B, Kamat PV. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. The Journal of Physical Chemistry C. 2009; 113(19):7990-7995.
  14. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction Photocatalysts. Adv Mater. 2017 May;29(20). doi: 10.1002/adma.201601694. Epub 2017 Feb 21. PMID: 28220969.
  15. Gao S, Wang W, Ni Y, Lu C, Xu Z. Facet-dependent photocatalytic mechanisms of anatase TiO2: A new sight on the self-adjusted surface heterojunction. Journal of Alloys and Compounds. 2015; 647:981-988.
  16. Bilmes SA, Mandelbaum P, Alvarez F, Victoria NM. Surface and electronic structure of titanium dioxide photocatalysts. The Journal of Physical Chemistry B. 2000; 104(42):9851-9858.
  17. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007 Jul;107(7):2891-959. doi: 10.1021/cr0500535. Epub 2007 Jun 23. PMID: 17590053.
  18. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000; 1(1):1-21.
  19. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972 Jul 7;238(5358):37-8. doi: 10.1038/238037a0. PMID: 12635268.
  20. Tan LK, Kumar MK, An WW, Gao H. Transparent, well-aligned TiO(2) nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. ACS Appl Mater Interfaces. 2010 Feb;2(2):498-503. doi: 10.1021/am900726k. PMID: 20356197.
  21. Kang X, Chen S. Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase. Journal of Materials Science. 2010; 45(10):2696-2702.
  22. Zhou W, Liu H, Wang J, Liu D, Du G, Cui J. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces. 2010 Aug;2(8):2385-92. doi: 10.1021/am100394x. PMID: 20735112.
  23. González-Garnica M, Galdámez-Martínez A, Malagón F, Ramos CD, Santana G, Abolhassani R, Panda PK, Kaushik A, Mishra YK, Karthik TV, Dutt A. One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance. Sensors and Actuators B: Chemical. 2021; 337:129765.
  24. Chauhan MS, Kumar R, Umar A, Chauhan S, Kumar G, Faisal M, Hwang SW, Al-Hajry A. Utilization of ZnO nanocones for the photocatalytic degradation of acridine orange. J Nanosci Nanotechnol. 2011 May;11(5):4061-6. doi: 10.1166/jnn.2011.4166. PMID: 21780406.
  25. Pan JQ, Tian, Z. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical. 2000; 66(1-3):277-279.
  26. Li AK, Wu WT, Kao CC, Chang RPH. Synthesis of monodispersed ZnO nanoparticles and their luminescent properties. Key Engineering Materials. 2003; 247:405-410.
  27. Suwanboon S, Amornpitoksuk P, Bangrak P, Randorn C. Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods. Ceramics International. 2014; 40(1):975-983.
  28. Kołodziejczak-Radzimska A, Jesionowski T. Zinc Oxide-From Synthesis to Application: A Review. Materials (Basel). 2014 Apr 9;7(4):2833-2881. doi: 10.3390/ma7042833. PMID: 28788596; PMCID: PMC5453364.
  29. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015;7(3):219-242. doi: 10.1007/s40820-015-0040-x. Epub 2015 Apr 19. PMID: 30464967; PMCID: PMC6223899.
  30. Xu F, Yuan Y, Han H, Wu D, Gao Z, Jiang K. Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight. Cryst Eng Comm. 2012; 14(10):3615-3622.
  31. Han C, Yang MQ, Weng B, Xu YJ. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys Chem Chem Phys. 2014 Aug 28;16(32):16891-903. doi: 10.1039/c4cp02189d. PMID: 25012572.
  32. Thi VHT, Lee BK. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Materials Research Bulletin. 2017; 96:171-182.
  33. Sohrabnezhad S, Seifi A. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity. Applied Surface Science. 2016; 386:33-40.
  34. Sang HX, Wang XT, Fan CC, Wang F. Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route. International Journal of Hydrogen Energy. 2012; 37(2):1348-1355.
  35. Rao GT, Babu B, Stella RJ, Manjari VP, Reddy CV, Shim J, Ravikumar RVSSN. Synthesis and characterization of VO2+ doped ZnO-CdS composite nanopowder. Journal of Molecular Structure. 2015; 1081:254-259.
  36. Toro RG, Malandrino G, Fragalà IL, Lo Nigro R, Losurdo M, Bruno G. Relationship between the nanostructures and the optical properties of CeO2 thin films. The Journal of Physical Chemistry B. 2004; 108(42):16357-16364.
  37. Trovarelli A. Catalysis by ceria and related materials. World Scientific. 2002; 2.
  38. Craciun R, Daniell W, Knözinger H. The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming. Applied Catalysis A: General. 2002; 230(1-2):153-168.
  39. Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today. 1999; 50(2):285-298.
  40. Liu JK, Luo CX, Wang JD, Yang XH, Zhong XH. Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity. Cryst Eng Comm. 2012; 14(24):8714-8721.
  41. Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y, Withers RL. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater. 2010 Jul;9(7):559-64. doi: 10.1038/nmat2780. Epub 2010 Jun 6. PMID: 20526323.
  42. Wang Z, Yin L, Zhang M, Zhou G, Fei H, Shi H, Dai H. Synthesis and characterization of Ag3PO4/multiwalled carbon nanotube composite photocatalyst with enhanced photocatalytic activity and stability under visible light. Journal of Materials Science. 2014; 49(4):1585-1593.
  43. Yang ZM, Huang GF, Huang WQ, Wei JM, Yan XG, Liu YY, Jiao C, Wan Z, Pan A. Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A. 2014; 2(6):1750-1756.
  44. Yao W, Zhang B, Huang C, Ma C, Song X, Xu Q. Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. Journal of Materials Chemistry. 2012; 22(9):4050-4055.
  45. Dong C, Wu KL, Li MR, Liu L, Wei XW. Synthesis of Ag3PO4-ZnO nanorod composites with high visible-light photocatalytic activity. Catalysis Communications. 2014; 46:32-35.
  46. Acharya KP. Photocurrent spectroscopy of CdS/plastic, CdS/glass, and ZnTe/GaAs hetero-pairs formed with pulsed-laser deposition (Doctoral dissertation, Bowling Green State University). 2009.
  47. Bhattacharya R, Saha S. Growth of CdS nanoparticles by chemical method and its characterization. Pramana. 2008; 71(1):187-192.
  48. Dumbrava A, Badea C, Prodan G, Ciupina V. Synthesis and characterization of cadmium sulfide obtained at room temperature. Chalcogenide Lett. 2010; 7(2):111-118.
  49. Bhadwal AS, Tripathi RM, Gupta RK, Kumar N, Singh RP, Shrivastav A. Biogenic synthesis and photocatalytic activity of CdS nanoparticles. RSC Advances. 2014; 4(19):9484-9490.
  50. Song S, Xu L, He Z, Chen J, Xiao X, Yan B. Mechanism of the photocatalytic degradation of C.I. Reactive Black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst. Environ Sci Technol. 2007 Aug 15;41(16):5846-53. doi: 10.1021/es070224i. PMID: 17874796.
  51. Pouretedal HR, Kadkhodaie A. Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism. Chinese Journal of Catalysis. 2010; 31(11-12):1328-1334.
  52. Cullity BD. Elements of X-ray Diffraction. Addison-Wesley Publishing. 1956.
  53. Song Y, Zhao H, Chen Z, Wang W, Huang L, Xu H, Li H. The CeO2/Ag3PO4 photocatalyst with stability and high photocatalytic activity under visible light irradiation. Physica Status Solidi (a). 2016; 213(9):2356-2363.
  54. Tju H, Muzakki AT, Taufik A, Saleh R. Photo-, sono-, and sonophotocatalytic activity of metal oxide nanocomposites TiO2/CeO2 for degradation of dye. In AIP Conference Proceedings. 2017; 1862:1; 030034.
  55. Wang X, Li S, Ma Y, Yu H, Yu J. H2WO4 H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst. The Journal of Physical Chemistry C. 2011; 115(30):14648-14655.
  56. Taufik A, Shabrany H, Saleh R. Different heat treatment of CeO2 nanoparticle composited with ZnO to enhance photocatalytic performance. In IOP Conference Series: Materials Science and Engineering. 2017; 188:1; 012038.
  57. Yin H, Yu K, Song C, Huang R, Zhu Z. Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity. ACS Appl Mater Interfaces. 2014 Sep 10;6(17):14851-60. doi: 10.1021/am501549n. Epub 2014 Aug 27. PMID: 25140838.
  58. Shirzadi A, Nezamzadeh-Ejhieh A. Enhanced photocatalytic activity of supported CuO-ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample. Journal of Molecular Catalysis A: Chemical. 2016; 411:222-229.
  59. Mageshwari K, Nataraj D, Pal T, Sathyamoorthy R, Park J. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. Journal of Alloys and Compounds. 2015; 625: 362-370.
  60. Contreras-García ME, García-Benjume ML, Macías-Andrés VI, Barajas-Ledesma E, Medina-Flores A, Espitia-Cabrera MI. Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis. Materials Science and Engineering: B. 2014; 183:78-85.
  61. Lamba R, Umar A, Mehta SK, Kansal SK. CeO2ZnO hexagonal nanodisks: Efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. Journal of Alloys and Compounds. 2015; 620: 67-73.
  62. Rodwihok C, Wongratanaphisan D, Tam TV, Choi WM, Hur SH, Chung JS. Cerium-oxide-nanoparticle-decorated zinc oxide with enhanced photocatalytic degradation of methyl orange. Applied Sciences. 2020; 10(5):1697.
  63. Khan MAM, Khan W, Ahamed M, Alhazaa AN. Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 Sci Rep. 2017 Oct 2;7(1):12560. doi: 10.1038/s41598-017-11074-7. PMID: 28970556; PMCID: PMC5624917.
  64. Channei D, Inceesungvorn B, Wetchakun N, Phanichphant S, Nakaruk A, Koshy P, Sorrell CC. Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceramics International. 2013; 39(3):3129-3134.
  65. An H, Li J, Zhou J, Li K, Zhu B, Huang W. Iron-coated TiO2 nanotubes and their photocatalytic performance. Journal of Materials Chemistry. 2010; 20(3):603-610.
  66. Chung KH, Park DC. Water photolysis reaction on cerium oxide photocatalysts. Catalysis Today. 1996; 30(1-3:157-162.
  67. Chatterjee P, Mukherjee D, Sarkar A, Chakraborty AK. Mn-doped CeO2-CNT nanohybrid for removal of water soluble organic dyes. Applied Nanoscience. 2022; 1-13.
  68. Shao G. Electronic structures of manganese-doped rutile TiO2 from first principles. The Journal of Physical Chemistry C. 2008; 112(47):18677-18685.
  69. Shao G. Red shift in manganese-and iron-doped TiO2: a DFT+ U analysis. The Journal of Physical Chemistry C. 2009; 113(16):6800-6808.
  70. Li H, Zhou Y, Tu W, Ye J, Zou Z. State‐of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Advanced Functional Materials. 2015; 25(7):998-1013.
  71. Channei D, Inceesungvorn B, Wetchakun N, Ukritnukun S, Nattestad A, Chen J, Phanichphant S. Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci Rep. 2014 Aug 29;4:5757. doi: 10.1038/srep05757. PMID: 25169653; PMCID: PMC5385822.
  72. Akbari-Fakhrabadi A, Saravanan R, Jamshidijam M, Mangalaraja RV, Gracia MA. Preparation of nanosized yttrium doped CeO2 catalyst used for photocatalytic application. Journal of Saudi Chemical Society. 2015; 19(5):505-510.
  73. Kumar KS, Jaya NV. Synthesis and Characterization of Pure and Sn-Doped CeO2 Asian Journal of Chemistry. 2013; 25(11).
  74. Li P, Zhang W, Zhang X, Wang Z, Wang X, Ran S, Lv Y. Synthesis, characterization, and photocatalytic properties of flower-like Mn-doped ceria. Materials Research. 2018; 21.
  75. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry. 2002; 98(51):13669-13679.
  76. Bangash FK, Alam S. Adsorption of acid blue 1 on activated carbon produced from the wood of Ailanthus altissima. Brazilian Journal of Chemical Engineering. 2009; 26:275-285.
  77. Magesh G, Viswanathan B, Viswanath RP, Varadarajan TK. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. 2009.
  78. Masui T, Hirai H, Imanaka N, Adachi G, Sakata T, Mori H. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. Journal of Materials Science Letters. 2002; 21(6):489-491.
  79. Zhang Y, Jiang W, Wang C, Namavar F, Edmondson PD, Zhu Z, Gao F, Lian J, Weber WJ. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation. Physical Review B. 2010; 82(18):184105.
  80. Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4725-31. doi: 10.1016/j.msec.2013.07.034. Epub 2013 Jul 30. PMID: 24094180.
  81. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH. Visible light-driven photocatalytic and photoelectrochemical studies of Ag-SnO2 nanocomposites synthesized using an electrochemically active biofilm. RSC Advances. 2014 4(49):26013-26021.
  82. Ansari SA, Khan MM, Ansari MO, Cho MH. Gold nanoparticles-sensitized wide and narrow band gap TiO2 for visible light applications: a comparative study. New Journal of Chemistry. 2015; 39(6):4708-4715.


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?