Review Article

An overview of the developments of nanotechnology and heterogeneous photocatalysis in the presence of metal nanoparticles

Tigabu Bekele Mekonnen*

Published: 20 September, 2022 | Volume 6 - Issue 3 | Pages: 103-114

In general, nanotechnology can be understood as a technology of design, fabrication and applications of nanostructures and nanomaterials, as well as a fundamental understanding of the physical properties and phenomena of nanomaterials and nanostructures. In recent years the development of industries like textile, leather, paint, food, plastics, and cosmetics is enlarged and these industries are connected with the discarding of a vast number of organic pollutants which are harmful to microbes, aquatic systems, and human health by influencing the different parameters. So the fabrication of those nanomaterials (coupled or doped) to form heterojunctions provides an effective way to better harvest solar energy and facilitate charge separation and transfer, thus enhancing the photocatalytic activity and stability. We expect this review to provide a guideline for readers to gain a clear picture of the fabrication and application of different types of heterostructured photocatalysts. In this review, starting from the photocatalytic reaction mechanism and the preparation of the photocatalyst, we review the classification of current photocatalysts, preparation methods, a factor that affects photocatalytic reaction, characterization of photocatalysts, and the methods for improving photocatalytic performance. This review also aims to provide basic and comprehensive information on the industrialization of photocatalysis technology.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001083 Cite this Article Read Full Article PDF


Nanotechnology; Heterostructure; Photocatalyst; Doping; Coupling; Photocatalysis


  1. Han F, Kambala VSR, Srinivasan M, Rajarathnam D. Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A. 2009; 359: 25-40.
  2. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advance in environmental research. 2004; 8: 501-551.
  3. Chen H, Zhao J. Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption. 2009; 15(4): 381-389.
  4. Ong ST, Keng PS, Lee WN, Ha ST, Hung YT. Dye waste water treatment. Water review. 2011; 3: 157-176.
  5. Huo SH, Yan XP. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. Journal of Materials Chemistry. 2012; 22:7449-7455.
  6. Brown MA, De Vito SC. Predicting azo dye toxicity. Critical Reviews in Environmental Science and Technology. 1993; 23: 249-324.
  7. Kornaros M. Lyberatos G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Material. 2006; 136: 95 102.
  8. Chen C, Ma W. Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews. 2010; 39(11): 4206-4219.
  9. Kubacka A, Fernandez-Garcia M, Colon G. Advanced nano-architectures for solar photocatalytic applications. Chemical Reviews. 2011; 112(3): 1555-1614.
  10. Dolbecq A, Mialane P, Keita B, Nadjo L. Polyoxometalate-based materials for efficient solar and visible light harvesting: application to the photocatalytic degradation of azo dyes. Journal of Materials Chemistry. 2012; 22(47): 24509-24521.
  11. Fan W, Zhang Q, Wang Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 Physical Chemistry Chemical Physics. 2013; 15(8): 2632-2649.
  12. Anandan S, Vinu A, Mori T, Gokulakrishnan N, Srinivasu P, Murugesan V, Ariga Photocatalytic degradation of 2, 4, 6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catalysis Communications. 2007; 8(9): 1377-1382.
  13. Hoffmann MR, Martin ST, Choi W,Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chemical Reviews. 1995; 95(1): 69-96.
  14. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in Nitrogen-Doped Titanium Oxides. Science. 2001; 293: 269-271.
  15. Bi Y, Ouyang S, Cao J, Ye J. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys Chem Chem Phys. 2011 Jun 7;13(21):10071-5. doi: 10.1039/c1cp20488b. Epub 2011 Apr 26. PMID: 21519619.
  16. Montini T, Gombac V, Hameed A, Felisari L, Adami G, Fornasiero P. Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chemical Physics Letter. 2010; 498: 113-119.
  17. Bi Y, Hu H, Ouyang S, Lu G, Cao J, Ye J. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chem Commun (Camb). 2012 Apr 18;48(31):3748-50. doi: 10.1039/c2cc30363a. Epub 2012 Mar 8. PMID: 22398441.
  18. Ran J, Yu JG, Jaroniec M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 Green Chemistry. 2011; 13: 2708-2713.
  19. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014 Aug 7;43(15):5234-44. doi: 10.1039/c4cs00126e. PMID: 24841176.
  20. Dana D, Vlasta B, Mazur M, Malati MA. Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis. 2002; 37: 91-105.
  21. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009 Oct;107(4):1193-201. doi: 10.1111/j.1365-2672.2009.04303.x. Epub 2009 Apr 17. PMID: 19486396.
  22. Wolderufael T, Yadav OP, Taddesse AM. Synthesis, characterization and photocatalytic activity of AgN-codoped ZnO nanoparticles towards methyl red degradation. Bulletin Chemical Society of Ethiopia. 2013; 27: 221-232.
  23. Nibret A, Yadav OP, Diaz I, Taddesse AM. Cr-N Co-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity for degradation of Thymol blue. Bulletin Chemical Society Ethiopia. 2015; 29(2): 247-258.
  24. Tedla H, Diaz I, Kebede T, Taddesse AM. Synthesis, characterization and photocatalytic activity of zeolite supported ZnO/Fe2O3/MnO2 Journal of Environmental Chemical Engineering. 2015; 3: 1586-1591.
  25. Shamaila S, Sajjad AK, Chen F, Zhang J. WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci. 2011 Apr 15;356(2):465-72. doi: 10.1016/j.jcis.2011.01.015. Epub 2011 Jan 11. PMID: 21320705.
  26. Wang YQ, Gu B, Xu WL. Electro-catalytic degradation of phenol on several metal-oxide anodes. J Hazard Mater. 2009 Mar 15;162(2-3):1159-64. doi: 10.1016/j.jhazmat.2008.05.164. Epub 2008 Jun 27. PMID: 18684560.
  27. Stylidi M, Kondarides DI, Verykios XE. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 Applied Catalysis B: Environmental. 2004; 47 (3): 189-201.
  28. Colmenares JC, Aramendia MA, Marinas A, Marinas JM, Urbano FJ. Synthesis, characterization and photocatalytic activity of different metal doped Titania systems. Applied Catalysis. 2006; 306: 120-127.
  29. Curco D, Gimenez J, Addardak A, Cervera-March S, Esplugas S. Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants. Catalysis Today. 2002; 76: 177-188.
  30. Palmisan G, Addam M, Augugliar V, Caronna T, Di Paola A, Lopez EG, Lodd V, Marci G, Palmisan, L, Schiavell M. Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catalysis Today. 2007; 122: 118-127.
  31. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972 Jul 7;238(5358):37-8. doi: 10.1038/238037a0. PMID: 12635268.
  32. Malato S, Ferna P, Maldonado M, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalo Today 2009; 147: 1-59.
  33. Anta J. Electron transport in nano structured metal oxide semiconductors. Current Opinion Colloid Interface Science. 2012; 17: 124-131.
  34. Nozik A, Beard M, Luther J, Law M, Ellingson R, Johnson J. Semiconductor quantum dots and quantum dot arrays and application of multiple excitation generation to their degeneration photovoltaic solar cells. Chemical Review. 2010; 110: 6873-6890.
  35. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005 Dec 15;172(12):1487-90. doi: 10.1164/rccm.200504-613PP. Epub 2005 Sep 8. PMID: 16151040; PMCID: PMC2718451.
  36. Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C. 2012; 13: 169-189.
  37. Cao Y, He T, Zhao L, Wang E, Yang W. Structure and phase transition behavior of Sn4+-doped TiO2 Journal of Physical Chemistry C. 2009; 113: 18121-18124.
  38. Mao C, Zhao Y, Qiu X, Zhu J, Burda C. Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. Phys Chem Chem Phys. 2008 Sep 28;10(36):5633-8. doi: 10.1039/b805915b. Epub 2008 Jul 30. PMID: 18956099.
  39. Marschall Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials. 2014; 24: 2421-2440.
  40. Kamat, P. Native and surface modified semiconductor nanocluster, Progress in inorganic chemistry. In: Karlin D Progress in Inorganic Chemistry: Molecular Level Artificial Photosynthetic Materials, John Wiley and Son, Hoboken, NJ. 1997; 44: 273-343.
  41. Beydoun D, Ama R, Low G, Mc Evoy S. Role of nanoparticles in photocatalysis. Journal Nanoparticles. 1999; 1: 439-458.
  42. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environmental Science. 2015; 8: 731-759.
  43. Li H, Zhou Y, Tu W, Ye J, Zou Z. State‐of‐the‐Art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Advanced Functional Materials 2015; 25: 998-1013.
  44. Kamat PV. Electrocatalytically active graphene-platinum nanocomposite. Chemistry of Pearson Education. 2015; 93: 267-300.
  45. Kim IY, Jo YK, Lee JM, Wang L, Hwang SJ. Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. Journal of Physics Chemicals Letter. 2014; 5: 4149-4161.
  46. Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale. 2013 Sep 21;5(18):8326-39. doi: 10.1039/c3nr01577g. PMID: 23873075.
  47. Yang ZM, Huang GF, Huang WQ, Wei JM, Yan XG, Liu, YY. Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A. 2014; 2: 1750-1756.
  48. Lin H, Ye H, Xu B, Cao J, Chen S. Ag3PO4 quantum dot sensitized BiPO4: a novel p-n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity. Catalysis Communications. 2013; 37: 55-59.
  49. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol. 2010 Oct 1;44(19):7641-6. doi: 10.1021/es101711k. PMID: 20831154.
  50. Zhao FM, Pan L, Wang S , Deng Q, Zou JJ, Wang L, Zhang X. Ag3PO4/TiO2 composite for efficient photodegradation of organic pollutants under visible light. Applied Surface Science. 2014; 317: 833-838.
  51. Jung S, Yong K. Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications. Chem Commun (Camb). 2011 Mar 7;47(9):2643-5. doi: 10.1039/c0cc04985a. Epub 2011 Jan 13. PMID: 21234467.
  52. Helaïli N, Bessekhouad Y, Bouguelia A, Trari M. p-Cu2O/n-ZnO heterojunction applied to visible light Orange II degradation. Solar Energy. 2010; 84: 1187-1192.
  53. Marschall R, Wang L. Non-metal doping of transition metal oxides for visible light photocatalysis. Catalysis Today. 2014; 225: 111-135.
  54. Abi M, Tigabu Bekele T, Diaz I, Adgo Polyaniline supported CdS/CeO2/Ag3PO4 nanocomposite: An A-B type tandem n-n heterojunctions with enhanced photocatalytic activity. Journal of Photochemistry and Photobiology, A: Chemistry. 2021; 406: 113005.
  55. Rodwihok C, Wongratanaphisan D, TaM TV, Choi WM, Hur SH, Chung JS. Cerium-oxide-nanoparticle-decorated zinc oxide with enhanced photocatalytic degradation of methyl orange. Applied Science. 2020; 10: 1697.
  56. Chen F, Ho P, Ran R, Chen W, Si Z, Wu X, Weng D, Huang Z, Lee C. Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. Journal of Alloys and Compounds, doi: 10.1016/j.jallcom.2017;04:138.
  57. Asi MA, He C, Su M, Xia D, Lin L, Deng H, Xiong Y, Qiu R,Li XZ. Photocatalytic reduction of CO2to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today. 2011; 175: 256-263.
  58. Li G, Lian Z, Wang W, Zhang D, Li H. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy. 2016; 19: 446-454.
  59. Wu W, Zhang S, Xiao X, Zhou J, Ren F, Sun L, Jiang C. Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures. ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3602-9. doi: 10.1021/am300669a. Epub 2012 Jun 21. PMID: 22692878.
  60. Yuan Y, Huang GF, Hu WY, Xiong DN, Zhou BX, Chang S, Huang WQ. Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance. Journal of Physics and Chemistry of Solids. 2017; 106: 1-9.
  61. Prabhu S, Viswanathan T, Jothivenkatachalam K. Jeganathan K. Visible light photocatalytic activity of CeO2-ZnO-TiO2 composites for the degradation of Rhodamine B. Indian Journal of Materials Science, doi.org/10.1155/2014/536123. 2014.
  62. Lee YL, Chi CF Liau SY. CdS/CdSe Co-Sensitized TiO2photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chemical Materials, 22: 922-927.
  63. Zhou, P., Yu, J. and Jaroniec, M. 2014. All‐solid‐state Z‐scheme photocatalytic systems. Advanced Materials. 2010; 26: 4920-4935.
  64. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc. 2011 Jul 27;133(29):11054-7. doi: 10.1021/ja203296z. Epub 2011 Jul 6. PMID: 21711031.
  65. He Y, Zhang L, Teng B, Fan M. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ Sci Technol. 2015 Jan 6;49(1):649-56. doi: 10.1021/es5046309. Epub 2014 Dec 17. PMID: 25485763.
  66. Yu J, Wang S, Low J, Xiao W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys. 2013 Oct 21;15(39):16883-90. doi: 10.1039/c3cp53131g. Epub 2013 Sep 3. PMID: 23999576.
  67. Miseki Y, Fujiyoshi S, Gunji T, Sayama, K. Photocatalytic water splitting under visible light utilizing I3/Iand IO3/I redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catalysis Science Technology. 2013; 3: 1750-1756.
  68. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc. 2013 Nov 13;135(45):16872-84. doi: 10.1021/ja4048637. Epub 2013 Oct 29. PMID: 24128384.
  69. Sasaki Y, Iwase A, Kato H, Kudo, A. The effect of Co-Catalyst for Z-scheme photocatalysis systems with a Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. Journal of Catalysis. 2008; 259: 133-137.
  70. Sayama K, Abe R, Arakawa H, Sugihara H. Decomposition of water into H2and           O2 by a two-step photoexcitation reaction over a Pt-TiO2 photocatalyst in NaNO2 and Na2CO3 aqueous solution. Catalysis Communication. 2006; 7: 96-99.
  71. Kato H, Hori M, Konta R, Shimodaira Y, Kudo, A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemical Letters. 2004; 33(10): 1348-1349.
  72. Sasaki Y, Kato H, Kudo A. [Co(bpy)3]3+/2+and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. Journal of American Chemical Society. 2013;135: 5441-5449.
  73. Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J. A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano. 2011 May 24;5(5):4084-90. doi: 10.1021/nn2006738. Epub 2011 Apr 21. PMID: 21500836.
  74. Wang X, Li S, Ma Y, Yu H, Yu J. H2WO4H2O/Ag/AgCl composite Nanoplates: A Plasmonic Z-scheme visible-light photocatalyst. Journal of Physical Chemistry C. 2011; 115(30), 14648-14655.
  75. Chen Z, Wang W, Zhang Z, Fang X. High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. Journal of Physical Chemistry C. 2013; 117: 19346-19352.
  76. Ahmed S, Rasual MG,Brown R, Hashib MA. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenol contaminants in waste water. Journal of Environmental Management. 2010; 9: 311-330.
  77. Wu W, Changzhong Jiang, Roy VA. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale. 2015 Jan 7;7(1):38-58. doi: 10.1039/c4nr04244a. PMID: 25406760.
  78. Zhang L, Jimei M. Nano phase materials and nanostructure. Beijing: Science press. 2001; 140-144.
  79. Chong MN, Jin B, Chow CW, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010 May;44(10):2997-3027. doi: 10.1016/j.watres.2010.02.039. Epub 2010 Mar 18. PMID: 20378145.
  80. Shankar MV, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V. Novel thin-film reactor for photocatalytic degradation of pesticides in aqueous solutions. Journal of Chemical Technology and Biotechnology. 2004; 79: 1279-1285.
  81. Sobczynski A, Duczmal L, Zmudzinski W. Phenol destruction by Journal of Chemical Technology and Biotechnology. 2004; 79: 1279-1285.
  82. Mahalakshmi M, Vishnu Priya S, Arabindoo B, Palanichamy M, Murugesan V. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hbeta zeolite-supported TiO2. J Hazard Mater. 2009 Jan 15;161(1):336-43. doi: 10.1016/j.jhazmat.2008.03.098. Epub 2008 Mar 29. PMID: 18455297.
  83. Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, Chen F, MaiZhi F, Zong H. Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution. Chemosphere. 2000 Aug;41(3):303-9. doi: 10.1016/s0045-6535(99)00487-7. PMID: 11057591.
  84. Jing HP, Wang CC, Zhang YW, Wang P, Li R. Photocatalytic degradation of methylene blue in ZIF-8. Journal of the Royal Society of Chemistry. 2014; 4: 54454-54462.
  85. Ayllon JA, A Figueras, S, Garelik L, Spirkova J, Durand L. Preparation of TiO2 powder using titanium isopropoxide decomposition in plasma enhanced chemical vapour deposition reactor. Journal of Material Science. 1999; 18: 1319-1321.
  86. Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. Journal of Physical Chemistry. 1997; 101: 3746-3752.
  87. Kashif N, Ouyang F. Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J Environ Sci (China). 2009;21(4):527-33. doi: 10.1016/s1001-0742(08)62303-7. PMID: 19634430.
  88. Mikaela G. Metal organic frameworks for heterogeneous catalysis: synthesis and characterization. Dissertation, Stockholm University, Sweden. 2012.
  89. Vakiti RJ. Hydro/Solvothermal synthesis, structures and properties of metal-organic frameworks based on s-block metals, masters theses and specialist projects. Western Kentucky University, Bowling Green, Kentucky, paper. 2012; 1168.
  90. Faraji Yamini Y, Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of Iranian Chemical Society 2010; 7(1): 1-37.
  91. Abdollahi A, Abdullah H, Zainal Z, Yusof NA. Synthesis and characterization of manganese doped ZnO nanoparticles. International Journal of Basic and Applied Sciences. 2011; 11(4): 62-68.
  92. Lu H. Interfacial synthesis of metal-organic frameworks. Open Access Dissertations and Theses. 2012; 7188.
  93. She X, Zhang X, Liu J, Li L, Yu X, Huang Z, Shang, S. Microwave-assisted synthesis of Mn3O4 nanoparticles/reduced graphene oxide nanocomposites for high performance supercapacitors. Materials Research Bulletin. 2015; 70: 945-950.
  94. Baek S, Yu SH, Park S K, Pucci A. Marichy C, Lee DC, Pinna N. A one-pot microwave-assisted non-aqueous sol-gel approach to metal oxide/graphene nanocomposite for Li-ion batteries. RSC Advances. 2011; 1(9): 1687-1690.
  95. Li Q,Hai P. Rapid microwave-assisted synthesis of silver decorated-reduced graphene oxide nanoparticles with enhanced photocatalytic activity under visible light. Materials Science in Semiconductor Processing. 2014; 22: 16-20.
  96. Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y. Synthesis, morphology control and properties of porous metal organic coordination polymers (MOCP). Journal of Microporous and Mesoporous Materials 2003; 58: 105-114.
  97. Munnik P, Petra E, De Jongh, Krijn P. De Jong- inorganic Chemistry Review. 2015; 115: 6687-671.
  98. Ece O. Hydrothermal synthesis and structural characterization of open-frame work metal phosphates template with organic diamine. Unpublished MSc Thesis, Izmir Institute of Technology. 2012.
  99. Negash Getachew. Benign methods for the synthesis of metal organic frameworks (MOFs), Unpublished doctoral dissertation, Addis Ababa University, Addis Ababa, Ethiopia. 2013.
  100. Smart L, Moore EA. Solid state chemistry. Taylor and Francis, New York. 2005.
  101. Mohanty RP. Fabrication and characterization of metal-organic framework (MOF) based membrane. Unpublished BSc thesis. National Institute of Technology, Rourkela. Molecular Catalysis 2012; 213: 225-230.
  102. Khan SA, Khan SB, Khan LU, Farooq A, Akhtar K, M Asiri M. Fourier transforms infrared spectroscopy: fundamentals and application in functional groups and nanomaterials characterization. Handbook of Materials Characterization. 2018;317-344. DOI:10.1007/978-3-319-92955-2_9.
  103. Gfroerer TH. Photoluminescence in analysis of surfaces and interfaces. Davidson College, Davidson, USA. John Wiley and Sons, Ltd. DOI: 10.1002/9780470027318.a2510. 2006.
  104. Qu Y, Duan X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev. 2013 Apr 7;42(7):2568-80. doi: 10.1039/c2cs35355e. PMID: 23192101.


Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?