Therapeutic Applicability of Fruticose Lichens: A Brief Review on Pseudevernia furfuracea
Main Article Content
Abstract
The distinctness in the chemical profile of fruticose lichens marked their versatile applications from culinary, dyeing, to modern therapeutics. Pseudevernia furfuracea, commonly known as Tree Moss, has been used from the Ancient Egyptian era to the Modern World. It has exemplary applicability in embalming the dead bodies and has also been used in perfume-making industries. It is a rich source of distinct bioactive constituents reported to exert different Pharmacological activities. Constituents, including depsides, depsidones, orsellinic acid derivatives, pulvinic acid derivatives, aromatic polyketides, and phenolic acids, have been identified in the species via chromatography and spectroscopic approaches. It has been reported to exhibit anticancer, antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and antifungal activities. Apart from its reported bioactivities, its biomonitoring potential further strengthens the significance of this species.
Article Details
Copyright (c) 2025 Attri A, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. Ibrahim NI, Wong SK, Mohamed IN, Mohamed N, Chin KY, Ima-Nirwana S, et al. Wound healing properties of selected natural products. Int J Environ Res Public Health. 2018;15(11):2360. Available from: https://doi.org/10.3390/ijerph15112360
2. Ahmed MZ, Rao T, Khan NA, Aslam M, Pane YS. Antimicrobial activities of lichens. In: Chemistry, Biology, and Pharmacology of Lichen. 2024;169-91. Available from: https://doi.org/10.1002/9781394190706.ch13
3. Paguirigan JA, Liu R, Im SM, Hur JS, Kim W. Evaluation of antimicrobial properties of lichen substances against plant pathogens. Plant Pathol J. 2022;38(1):25. Available from: https://doi.org/10.5423/PPJ.OA.12.2021.0176
4. Rankovic B, Kosanic M. Lichens as a potential source of bioactive secondary metabolites. In: Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential. Cham: Springer International Publishing; 2019;1-29. Available from: https://link.springer.com/chapter/10.1007/978-3-319-13374-4_1
5. Karagoz Y, Karagoz BO. Lichens in pharmacological action: what happened in the last decade? Eurasian J Med. 2022;54(Suppl 1): S195. Available from: https://doi.org/10.5152/eurasianjmed.2022.22335
6. Kosanic M, Rankovic B, Vukojevic J. Antioxidant properties of some lichen species. J Food Sci Technol. 2011;48(5):584-90. Available from: https://link.springer.com/article/10.1007/s13197-010-0174-2
7. Solarova Z, Liskova A, Samec M, Kubatka P, Busselberg D, Solar P. Anticancer potential of lichens' secondary metabolites. Biomolecules. 2020;10(1):87. Available from: https://doi.org/10.3390/biom10010087
8. Tian L, Wang T, Luan L, Meng Z, Han J, Zhao C, et al. Terminally Symmetric β-Turn Peptides for Multidrug-Resistant Bacterial Infections. J Med Chem. 2025;68(9):9341-56. Available from: https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.4c03057
9. Nguyen HT, Ketha A, Kukavica B, Tatipamula V. Anti-inflammatory potential of lichens and their substances. MedDocs Ebooks. 2021;1-9. Available from: https://doi.org/10.1021/acs.jmedchem.4c03057
10. Furmanek L, Czarnota P, Seaward MR. A review of the potential of lichen substances as antifungal agents: the effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch Microbiol. 2022;204(8):523. Available from: https://doi.org/10.1007/s00203-022-03104-4
11. Thadhani VM, Karunaratne V. Potential of lichen compounds as antidiabetic agents with antioxidative properties: a review. Oxid Med Cell Longev. 2017;2017(1):2079697. Available from: https://doi.org/10.1155/2017/2079697
12. Shrestha G, St Clair LL, O'Neill KL. The immunostimulating role of lichen polysaccharides: a review. Phytother Res. 2015;29(3):317-22. Available from: https://doi.org/10.1002/ptr.5251
13. Thakur M, Kasi IK, Islary P, Bhatti SK. Nutritional and health-promoting effects of lichens used in food applications. Curr Nutr Rep. 2023;12(4):555-66. Available from: https://doi.org/10.1007/s13668-023-00489-6
14. David RLM, Thajuddin S, Moorthy IG, Dhanasekaran D, Kumar RS, Thajuddin N. Processed lichens could be a potential functional food with special reference to traditional dishes. In: Fermented Food Products. CRC Press. 2019;67-76. Available from: https://doi.org/10.1201/9780429274787-5?urlappend=%3Futm_source%3Dresearchgate
15. Mendili M, Aschi-Smiti S, Khadhri A. Phytochemical screening of natural textile dyes extracted from Tunisian lichens. Biomass Convers Biorefin. 2025;15(1):1443-60. Available from: https://doi.org/10.1007/s13399-023-05135-3
16. Das AK, Sharma A, Kathuria D, Ansari MJ, Bhardwaj G, editors. Chemistry, Biology, and Pharmacology of Lichen. Hoboken (NJ): John Wiley & Sons; 2024. Available from: https://www.wiley.com/en-us/Chemistry%2C+Biology+and+Pharmacology+of+Lichen-p-9781394190690
17. Ellis CJ, Asplund J, Benesperi R, Branquinho C, Di Nuzzo L, Hurtado P, et al. Functional traits in lichen ecology: a review of challenge and opportunity. Microorganisms. 2021;9(4):766. Available from: https://www.mdpi.com/2076-2607/9/4/766
18. Abdel-Maksoud G, El-Amin AR. A review of the materials used during the mummification processes in ancient Egypt. Mediterr Archaeol Archaeom. 2011;11(2):129-50. Available from: https://www.researchgate.net/publication/281404720_A_REVIEW_ON_THE_MATERIALS_USED_DURING_MUMMIFICATION_PROCESSES_IN_ANCIENT_EGYPT
19. Bogdon E. Uses of plants in burial practices. In: Forensic Botany. CRC Press. 2024;103-11.
20. Agai JM. The role of the ancient Egyptians' beliefs in the afterlife in preserving the ancient Egyptian cultural heritage. J Lang Cult. 2020;11(1):17-23. Available from: https://academicjournals.org/journal/JLC/article-full-text-pdf/B240B5D64139
21. Armstrong RA. The lichen symbiosis: lichen “extremophiles” and survival on Mars. J Astrobiol Space Sci Rev. 2019;1:378-97. Available from: https://www.researchgate.net/publication/334603822_The_Lichen_Symbiosis_Lichen_Extremophiles_and_Survival_on_Mars
22. Shukla V, Baipai R, Upreti DK. Lichens to Biomonitor the Environment. Springer India; 2014. Available from: https://link.springer.com/book/10.1007/978-81-322-1503-5
23. Nash TH. Lichen Biology. 2nd ed. Cambridge University Press; 2008. Available from: https://api.pageplace.de/preview/DT0400.9780511410826_A23678173/preview-9780511410826_A23678173.pdf
24. Gargas A, DePriest PT. Phyletic relationships among species of Usnea (lichenized Ascomycetes) inferred from ITS ribosomal DNA sequence data. Syst Bot. 1996;21(3):333-40.
25. Notov AA. Fruticose lichens: structural diversity, taxonomic characteristics and evolution. Wulfenia. 2014;21(5):21-31. Available from: https://www.zobodat.at/pdf/Wulfenia_21_0021-0031.pdf
26. Aptroot A, Barreto FMO, Pena DAR, da Silva Caceres ME. A new lineage of fruticose lichens that belongs to the Trapeliaceae (Trapeliales, Ascomycota) from Alagoas, NE Brazil. Bryologist. 2018;121(4):529-35. Available from: https://doi.org/10.1639/0007-2745-121.4.529
27. Galun M, editor. CRC Handbook of Lichenology. Vol. 2. Boca Raton: CRC Press. 1988;153-69. Available from: https://dalspaceb.library.dal.ca/server/api/core/bitstreams/beb5fde6-571d-433b-9c5b-29f1f72f5b37/content
28. Brodo IM, Sharnoff SD, Sharnoff S. Lichens of North America. Yale University Press; 2001. Available from: https://www.researchgate.net/publication/341694944_Lichens_of_North_America
29. Sueoka Y, Sakakibara M, Sano S, Yamamoto Y. A new method of environmental assessment and monitoring of Cu, Zn, As, and Pb pollution in surface soil using terricolous fruticose lichens. Environments. 2016;3(4):35. Available from: https://doi.org/10.3390/environments3040035
30. Yang MX, Devkota S, Wang LS, Scheidegger C. Ethnolichenology-the use of lichens in the Himalayas and southwestern parts of China. Diversity. 2021;13(7):330. Available from: https://doi.org/10.3390/d13070330
31. Nogales M, Hervias-Parejo S. Consumption of the lichen Roccella gracilis by the large ground-finch Geospiza magnirostris on the island of Daphne Major (Galapagos). Ornitol Neotrop. 2023;34(1):40-1. Available from: https://doi.org/10.58843/ornneo.v34i1.1161
32. Shcherbakova A, Stromstedt AA, Goransson U, Gnezdilov O, Turanov A, Boldbaatar D, et al. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World J Microbiol Biotechnol. 2021;37(8):129. Available from: https://doi.org/10.1007/s11274-021-03099-y
33. Makarevich EV, Filippova EI, Sedel’nikova NV, Mazurkov OY, Protsenko MA, Shishkina LN, et al. Anti-influenza activity of Cetraria islandica lichen extracts in in vitro experiments. Bull Exp Biol Med. 2023;175(2):215-8. Available from: https://link.springer.com/article/10.1007/s10517-023-05837-8
34. Mariraj M, Gundappa M, Velayuthaprabhu S, Shah K, Ponnuchamy P, Mendem SK, et al. In vitro, in vivo, and in silico anticancer activity and toxicity of Usnic acid extracted from the mycobiont culture of Usnea baileyi. Naunyn Schmiedebergs Arch Pharmacol. 2025;398(5):5101-17. Available from: https://link.springer.com/article/10.1007/s00210-024-03584-9
35. Pathak A, Upreti DK, Dikshit A. Antidermatophytic activity of the fruticose lichen Usnea orientalis. Medicines. 2016;3(3):24. Available from: https://doi.org/10.3390/medicines3030024
36. Engin TA, Emsen B, Yılmaz R, Koc RC, Inan B, Ozcimen D. Cytotoxicity of Usnea longissima Ach. Extracts and their secondary metabolite, usnic acid, on different cells. Anat J Bot. 2023;7(2):140-5. Available from: https://doi.org/10.30616/ajb.1343823
37. Sultana N, Afolayan AJ. A new depsidone and antibacterial activities of compounds from Usnea undulata Stirton. J Asian Nat Prod Res. 2011;13(12):1158-64. Available from: https://doi.org/10.1080/10286020.2011.622720
38. Torres-Benitez A, Ortega-Valencia JE, Sanchez M, Hillmann-Eggers M, Gomez-Serranillos MP, Vargas-Arana G, et al. UHPLC-MS chemical fingerprinting and antioxidant, enzyme inhibition, anti-inflammatory in silico and cytoprotective activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica. Antioxidants. 2022;12(1):10. Available from: https://doi.org/10.3390/antiox12010010
39. Ismed F, Devehat FLL, Rouaud I, Ferron S, Bakhtiar A, Boustie J. NMR reassignment of stictic acid isolated from a Sumatran lichen Stereocaulon montagneanum (Stereocaulaceae) with superoxide anion scavenging activities. Z Naturforsch C. 2017;72(1-2):55-62. Available from: https://doi.org/10.1515/znc-2016-0148
40. Türkez H, Aydın E, Aslan A. Effects of Lichenic Extracts (Hypogymnia physodes, Ramalina polymorpha and Usnea florida) on Human Blood Cells: Cytogenetic and Biochemical Study. Iran J Pharm Res. 2012;11(3):889-96. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3813136/
41. Santiago K, Borricano J, Canal JN, Marcelo DMA, Pérez MCP, de la Cruz TEE. Antibacterial activities of fruticose lichens collected from selected sites in Luzon Island, Philippines. Philipp Sci Lett. 2010;3(2):18-29. Available from: https://www.semanticscholar.org/paper/Antibacterial-activities-of-fruticose-lichens-from-Angelique-Santiago/cc476c498d2634dba2d42c6f01d01663d6ac7629
42. Robeck A. Pseudevernia Furfuracea-Patterns of Diversity in a Shrubby Lichen. Huddinge: Institutionen for livsvetenskaper; 2007. Available from: https://www.diva-portal.org/smash/get/diva2:15388/FULLTEXT01.pdf
43. Aguirre-Hudson B, Whitworth I, Spooner BM. JM Despreaux's from the Canary Islands and West Africa: an account of a 19th-century collection found in an English archive. Bot J Linn Soc. 2011;166(2):185-211. Available from: https://doi.org/10.1111/j.1095-8339.2011.01140.x
44. Malaspina P, Modenesi P, Giordani P. Physiological response of two varieties of the lichen Pseudevernia furfuracea to atmospheric pollution. Ecol Indic. 2018;86:27-34. Available from: https://doi.org/10.1016/j.ecolind.2017.12.028
45. Rikkinen J. Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographic gradient. Symb Bot Upsal. 1997;1997(32):223-45. Available from: https://www.researchgate.net/publication/235637167_Habitat_shifts_and_morphological_variation_of_Pseudevernia_furfuracea_along_a_topographic_gradient
46. Tretiach M, Crisafulli P, Pittao E, Rinino S, Roccotiello E, Modenesi P. Isidia ontogeny and its effect on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf. Lichenologist. 2005;37(5):445-62. Available from: https://doi.org/10.1017/S0024282905014982
47. Ahmad, S., Katiyar, C. K., Ulrich-Merzenich, G. S., & Mukherjee, P. K. (2022). Metabolomics and ethnopharmacology in the development of herbal and traditional medicine. Frontiers in Pharmacology, 13, 851023. Available from: https://doi.org/10.3389/fphar.2022.851023
48. Kalra R, Conlan XA, Areche C, Dilawari R, Goel M. Metabolite profiling of the Indian food spice lichen, Pseudevernia furfuracea, combined with optimised extraction methodology to obtain bioactive phenolic compounds. Front Pharmacol. 2021;12:629695. Available from: https://doi.org/10.3389/fphar.2021.629695
49. Mitrovic T, Stamenkovic S, Cvetkovic V, Radulovic N, Mladenovic M, Stankovic M, et al. Platismatia glauca and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial, and antibiofilm agents. EXCLI J. 2014;13:938. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4464406/
50. Guvenc A, Akkol EK, Suntar I, Keles H, Yildiz S, Calss I. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. J Ethnopharmacol. 2012;144(3):726-34. Available from: https://doi.org/10.1016/j.jep.2012.10.021
51. Kello M, Goga M. Lichen, Pseudevernia furfuracea (L.) Zopf: analytical compositional features, biological activity, and use in cancer studies. In: Ancient and Traditional Foods, Plants, Herbs, and Spices used in Cancer. CRC Press; 2023;281-96. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003260028-23/lichen-pseudevernia-furfuracea-zopf-martin-kello-michal-goga
52. Sarikurkcu C, Kocak MS, Calapoglu M, Ocal C, Tepe B. Biological and phytochemical evaluation: Pseudevernia furfuracea as an alternative multifunctional agent. J Funct Foods. 2016;24:11-7. Available from: https://doi.org/10.1016/j.jff.2016.03.022
53. Aoussar N, Manzali R, Nattah I, Rhallabi N, Vasiljevic P, Bouksaim M, et al. Chemical composition and antioxidant activity of two lichen species (Pseudevernia furfuracea L. and Evernia prunastri L) collected from Morocco. JMES. 2017;8(6):1968-76. https://www.jmaterenvironsci.com/Document/vol8/vol8_N6/209-JMES-3212-Aoussar.pdf
54. Kello M, Kuruc T, Petrova K, Goga M, Michalova Z, Coma M, et al. Pro-apoptotic potential of Pseudevernia furfuracea (L.) Zopf extracted and isolated physodic acid in an acute lymphoblastic leukemia model in vitro. Pharmaceutics. 2021;13(12):2173. Available from: https://doi.org/10.3390/pharmaceutics13122173
55. Joulain D, Tabacchi R. Lichen extracts as raw materials in perfumery. Part 2: treemoss. Flavour Fragrance J. 2009;24(3):105-16. Available from: https://doi.org/10.1002/ffj.1923
56. Seklic DS, Jovanovic MM, Virijevic KD, Grujic JN, Zivanovic MN, Markovic SD. Pseudevernia furfuracea inhibits migration and invasion of colorectal carcinoma cell lines. J Ethnopharmacol. 2022;284:114758. Available from: https://doi.org/10.1016/j.jep.2021.114758
57. Petrova K, Kello M, Kuruc T, Backorova M, Petrovova E, Vilkova M, et al. Potential effect of Pseudevernia furfuracea (L.) Zopf extract and metabolite physodic acid on tumour microenvironment modulation in MCF-10A cells. Biomolecules. 2021;11(3):420. Available from: https://doi.org/10.3390/biom11030420
58. Bakir TO, Geyikoglu F, Colak S, Turkez H, Aslan A, Bakir M. The effects of Cetraria islandica and Pseudevernia furfuracea extracts in normal and diabetic rats. Toxicol Ind Health. 2015;31(12):1304-17. Available from: https://doi.org/10.1177/0748233713475521
59. Essadki Y, Hilmi A, Cascajosa-Lira A, Girao M, Darrag EM, Martins R, et al. In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens. Microorganisms. 2024;12(11):2336. Available from: https://doi.org/10.3390/microorganisms12112336
60. Karabulut G, Ozturk Sule. Antifungal activity of Evernia prunastri, Parmelia sulcata, Pseudevernia furfuracea var. furfuracea. Pakistan J Bot. 2015;47(4):1575-9. Available from: https://www.researchgate.net/publication/282712733_Antifungal_activity_of_Evernia_prunastri_Parmelia_sulcata_Pseudevernia_furfuracea_var_Furfuracea
61. Calchera A, Dal Grande F, Bode HB, Schmitt I. Biosynthetic gene content of the ‘perfume lichens’ Evernia prunastri and Pseudevernia furfuracea. Molecules. 2019;24(1):203. Available from: https://doi.org/10.3390/molecules24010203
62. Alom S, Ali F, Kakoti BB, Choudhury S, Ahmed AB. Lichen is a raw material in the perfumery and cosmetic industries. In: Chemistry, Biology, and Pharmacology of Lichen. 2024;275-87. Available from: https://doi.org/10.1002/9781394190706.ch17
63. Incerti G, Cecconi E, Capozzi F, Adamo P, Bargagli R, Benesperi R, et al. Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution. Environ Sci Pollut Res. 2017;24(9):8004-16. Available from: https://link.springer.com/article/10.1007/s11356-017-8486-7
64. Vingiani S, Adamo P, Giordano S. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area. Environ Pollut. 2004;129(1):145-58. Available from: https://doi.org/10.1016/j.envpol.2003.09.016
65. Vardar C, Basaran E, Cansaran-Duman D, Aras S. Air-quality biomonitoring: assessment of genotoxicity of air pollution in the province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. Mutat Res Genet Toxicol Environ Mutagen. 2014;759:43-50. Available from: https://doi.org/10.1016/j.mrgentox.2013.09.011
66. Demkova L, Bobul’ska L, Arvay J, Jezny T, Ducsay L. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia). J Environ Sci Health A. 2017;52(1):30-6. Available from: https://doi.org/10.1080/10934529.2016.1221220
67. Zesch, S., Panzer, S., Paladin, A., Sutherland, M. L., Lindauer, S., Friedrich, R., & Rosendahl, W. (2024). The multifaceted nature of Egyptian mummification: Paleoradiological insights into child mummies. Plos one, 19(12), e0316018. Available from: https://doi.org/10.1371/journal.pone.0316018
68. Hurley K. Lichenpedia: A Brief Compendium. Vol. 11. Princeton University Press; 2024. Available from: https://www.degruyterbrill.com/document/doi/10.1515/9780691239897/html?lang=en&srsltid=AfmBOorDhUl23IF5rW0aV6Zx3fNfGYtZ8xkOL_UgjkkhsHnw7tJHdtYS
69. Jacob I, Jacob W. The Healing Past: Pharmaceuticals in the Biblical and Rabbinic World. Brill, 1993. Available from: https://archive.org/details/healingpastpharm0000unse
70. Seaton B. The Language of Flowers: A History. University of Virginia Press, 2012. Available from: https://www.upress.virginia.edu/title/2776/
71. Arihilam NH, Arihilam EC. Impact and control of anthropogenic pollution on the ecosystem–a review. J Biosci Biotechnol Discov. 2019;4(3):54-9. Available from: https://doi.org/10.31248/JBBD2019.098
72. Garty J. Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci. 2001;20(4):309-71. Available from: https://doi.org/10.1016/S0735-2689(01)80040-X?urlappend=%3Futm_source%3Dresearchgate
73. Topal M, Arslan Topal EI, Obek E, Aslan A. Potential human health risks of toxic/harmful elements by consumption of Pseudevernia furfuracea. Int J Environ Health Res. 2022;32(9):1889-96. Available from: https://doi.org/10.1080/09603123.2021.1925635
74. Tuncel SG, Yenisoy-Karakas S, Dogangun A. Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures. Talanta. 2004;63(2):273-7. Available from: https://doi.org/10.1016/j.talanta.2003.10.055