Asynchronous flowering in clonal seed orchards - An effective strategy for alternative management
Main Article Content
Abstract
Tropical forests have long been of interest to biologists because of their high species diversity and their complicated patterns of community organization. The recent ecological studies which have demonstrated that tropical trees are diverse in their reproductive biology and dynamic population structure. Asynchronous flowering among the clones in a clonal seed orchard is an inherent problem resulting in poor seed and fruit set in them. These results in the complete defeat of the prime objective of establishment of clonal seed orchards (CSOs) i.e. abundant quality seed production poor flowering and asynchronous flowering between the clones are a major bottleneck in higher seed set in these clonal seed orchards across the country. Asynchrony found between clones may be attributed to the origin of clones, which are collected from different zonal populations as revealed by isoenzyme and DNA markers studies. This article reviews the work done in CSOs across the world and suggests an alternate strategy in designing the clonal seed orchards of the future.
Article Details
Copyright (c) 2019 Mondal S, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of Plant Science and Phytopathology is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.
License: Copyright © 2017 - 2025 | Open Access by Journal of Plant Science and Phytopathology is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.
With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.
Compliance 'CC BY' license helps in:
Permission to read and download | ✓ |
Permission to display in a repository | ✓ |
Permission to translate | ✓ |
Commercial uses of manuscript | ✓ |
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
Sett R, Mishra JP, Rana PK. Seed production of teak in different orchards of central India: the present scenario. Int J Sci, EnvironTechnol. 2016; 5: 969-990. Ref.: https://tinyurl.com/y6rnagov
Yuan H, Niu S, El-Kassaby YA, Li Y, Li W. Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard. PLoS ONE. 2016; 11: e0157646. Ref.: https://tinyurl.com/y5pfk6v3
Zhang HX, Shen XH. Progress on reproductive system of forest seed orchards. Scientia Silvae Sinicae. 2002; 38: 129–134. Ref.: https://tinyurl.com/yyarmcyx
Ertekin M. The Molecular Basis of Plant Genetic Diversity. In: Genetic Diversity of Seed Orchard Crops. 2012. Ref.: https://tinyurl.com/yymz27f8
Burczyk J, Chalupka W. Flowering and cone production variability and its effect on parental balance in a Scots pine clonal seed orchard. Annales des sciences forestières, INRA/EDP Sciences. 1997; 54: 129-144. Ref.: https://tinyurl.com/yyw3982z
Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, et al. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016; 6: 54. Ref.: https://tinyurl.com/y489a6hj
Szmidt AE. Genetic composition of seed orchard crops. Forest Ecology and Management. 1987; 19: 227-232. Ref.: https://tinyurl.com/y4z2c5n9
Larsen CS. Genetics in Silviculture. Oliver & Boyd, Edinburgh, Scotland. 1956; 224. Ref.: https://tinyurl.com/y2obvk98
Werner M. Effects on plant yield, height growth and height variation in fractionation of a grain seed lot (Effects of spruce seed grading on plant percent, height growth and variation). Inf. Skogsforad. Institute for skogsforbattring, Ekebo.1976; 4.
Srivastava A, Devagiri GM, Gunaga RP, Vasudeva R, Rathore TS, et al. Induction of flowering in teak clonal seed orchard-a case study. Indian J Trop. 2008; Biodivers.16; 33-42.
Larsen CS. Genetics in Silviculture, Oliver & Boyd, Edinburgh, Scotland. 1956, 224. Ref.: https://tinyurl.com/y2obvk98
Zobel BJ, Barber J, Brown CL, Perry TO. Seed orchards; their concept and management. J Tropical Forest. 1958; 56: 815-825. Ref.: https://tinyurl.com/yyaevukv
El-Kassaby YA, Askew GR. Seed orchards and their genetics. In: Mandal AK, Gibson GL. (Ed.), Forest genetics and tree breeding, CBS Publishers and Distributors. Daryaganj. New Delhi. India. 1998; 103–111.
Kumaravelu G. Teak in India. In Henry Wood (ed.) Teak in Asia, FORSPA Publication. No. 4, Bangkok. 1993; 27–34.
Kedharnath S, Matthews JD. Improvement of teak by selection and breeding. Ind For. 1962; 88: 277–284. Ref.: https://tinyurl.com/y5r294fb
Palupi ER, Owens JN. Reproductive phenology and reproductive success of teak (Tectonagrandis). Int J Plant Science. 1998; 159: 833-842. Ref.: https://tinyurl.com/yy8dg8sv
Gunga RP. Genetic variation for phenology in a clonal seed orchard of teak. A thesis submitted to Department of Forest Biology and Tree improvement college of Forestry, Sirsi. 2000.
Griffin AR. Clonal variation in Radiata pine seed orchards. II. Flowering phenology. Aus Forest Res. 1984; 14: 271-281. Ref.: https://tinyurl.com/y2bjqml4
Gunaga RP. Flowering in seed orchards: Pattern, consequences and of flowering. Seminar report of the Master of Science in Forestry, submitted to the Dept. of Forest Biology and Tree Improvement, College of Forestry Sirsi. 1999; 35.
Pharis RP, Tomchuk D, Beall FD. Promotion of flowering in white spruce (Piceaglauca) by gibberellin A4/7, auxin (naphthaleneacetic acid), and the adjunct cultural treatments of girdling and Ca(NO3)2 fertilization. Canadian J Forest Research. 1986; 16: 340–345.
Hetherington. Management of Eucalypt seed orchard with pacloburtrazol. in: proc of Australian forest growers conference on. Faces of farm forestry. Launceston. Tasmania .1992; 235-238.
Rawat MS, Uniyal DP, Vakshasya RK. Variation in the model teak seed orchard. New Forest, Dehra Dun. Ind J For. 1992, 118: 60-65. Ref.: https://tinyurl.com/yy27fdcn
Gunaga RP, Vasudeva R. Variation in flowering phenology in a clonal seed orchard of teak. JTree Sci. 2002b; 21: 1-10. Ref.:
Neelayv R, Bhandari RS, Negi KS. Effect of insecticidal and hormonal spray on the production of fruits in teak seed orchards. Ind For. 1983; 109: 829–837. Ref.: https://tinyurl.com/yxp2mrys
Pharis RP, Tomchuk D, Beall FD et al. Promotion of flowering in white spruce (Piceaglauca) by gibberellin A4/7, auxin (naphthaleneacetic acid), and the adjunct cultural treatments of girdling and Ca(NO3)2 fertilization. Canadian J Forest Research. 1986; 16: 340–345.
Smith RF. Effects of stem injections of gibberellins A(4/7) and paclobutrazol on sex expression and the within-crown distribution of seed and pollen cones in black spruce (Piceamariana). Canadian J Forest Research. 1998; 28: 641-651. Ref.: https://tinyurl.com/y2xpulah
Hetherington S, Jones KM, Koen TB. Stimulation of bud production in Eucalyptus globulus by paclobutrazol application. In Proceedings: IUFRO Symposium on Intensive Forestry: The role of Eucalypts, Durban, South Africa. (Ed) APG Schonau. 1991; 1: 39-41. Ref.: https://tinyurl.com/yymgmkvp
Srivastava A. Quantitative analysis of variation for flowering phonology and fruit yield in a Clonal Seed Orchard of Teak. Ind J Tropical Biodiversity. 2013; 16: 143-154.
Sweet GB. Seed orchards in development. Tree Physiology. 1994; 15: 527-530. Ref.: https://tinyurl.com/y2ajazzs
Baradat P. Durel CE, Pastuszka P. The polycross seed orchard: an original concept. In Proc. AFOCEL/IUFRO Conference, Bordeaux. France. 1992; 1: 181-188.
Wong CY. Flower stimulation techniques for mature Gmelina arborea Roxb. Trees. Malaysian Forester. 1987; 50: 79-86. Ref.: https://tinyurl.com/y3mty8nj
Gunaga RP. Genetic Variation for Phenology in a Clonal Seed Orchards of Teak (TectonagrandisLinn.f). M.Sc. Forestry Thesis, Department of Forest Biology and Tree Improvement, College of Forestry, Sirsi campus, University of Agricultural Sciences Dharwad: 2000; 128.