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Introduction
Nowadays, with the help of drones, we can not only take 

detailed, high-resolution shots but also evaluate the shots 
using the methods used in image processing. In the present 
case, these represent the various ϐilters (noise, color, edge, etc.) 
on the one hand, and the indices calculated from the spectrum 
bands on the other. The use of indices is currently common 
practice in agriculture; however, these indices use bands used 
in different infrared ranges in addition to the RGB (red, green, 
blue) bands. In addition, there are several indices containing 
only RGB bands, the most common purpose of which is to 
create indices formed using only RGB bands like the results 
of the Normalized Vegetation Index (NDVI) and Normalized 
Difference Red Edge Index (NDRE) indices formed using the 
more expensive infrared bands (Near Infrared, RedEdge).

The aim of our work is to objectively compare and group 
the most common RGB indices (37 pcs) currently found in the 
literature. Of course, it is not our goal to process all the indices 
that can be found in the literature, since new indices are always 
being created, which are usually speciϐic to a speciϐic plant 
culture. The most important question is how many groups 
they can be classiϐied into, using an objective mathematical 

method, as well as which RGB indexes each group contains, 
so which indexes give almost the same result. We did not 
aim to examine the applicability of the indices, i.e. to what 
vegetation they were applied, and what is the interpretation 
of the results of the given index. Considering the various plant 
cultures, we didn't have the opportunity to do so. We wanted 
to use a purely mathematical method to compare the indices 
and draw attention to possible redundancies.

Materials and methods
As a ϐirst step, we collected the most important RGB indices 

found in the literature, which are as follows (Table 1).

The test image used for the RGB indices (Figure 1) was 
taken in JPG picture ϐile format with a DJI Mavic Mini rotary-
wing quadcopter drone, in Vértes mountains, Hungary. The 
recording shows low and higher vegetation, shade, a barren 
dirt road, and white limestone piles, so the recording provides 
a good opportunity to test the indices. The parameters of the 
camera used for recording are as follows. Sensor type 1/2.3" 
CMOS (Complementary Metal-Oxide Semiconductor sensor), 
effective pixel 12 Megabyte, image size 4000 x 3000 pixels, 
viewing angle 83°, focal length 24 mm and aperture f/2.8.
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To ϐind out which band carries the most information, we 
calculated the Shannon’s entropy of each band [1,2] (Table 2).
So, those indexes that contain the band with the highest 
entropy give the right result (differentiate the vegetation 
sufϐiciently [3,4].

Table 2 contains the values calculated according to the 
reference [5,6] for the self-similar (Spectral Fractal Dimension) 
image structure. All of this is important for higher-order image 
processing processes, information security analysis [3,7,8], 
and for the investigation of the effect of image sensor noise on 
the image structure [9,10].

From the RGB bands of the recording shown in Figure 1, 
we calculated the individual indices with the Quantum GIS Figure 1: Test image used for RGB indices.

Table 1: Processed RGB indices.

Index Name Formula Reference

BCC Blue Chromatic Coordinate Index B/(R+G+B) De Swaef, et al. 2021 [19]

BGI Simple blue-green Ratio; Blue Green Pigment Index B/G Zarco-Tejada, et al. 2005 [20]

BI Brightness Index ((R2+B2+G2)/3)2 Richardson & Wiegand 1977 [21]

BRVI Blue Red Vegetation Index (B-R)/(B+R) De Swaef, et al. 2021 [19]

CIVE Colour Index of Vegetation 0,441r-0,881g+0,385b+18,78745 Kataoka et al. 2003 [22]

ExB Excess Blue 1,4b-g Mao, et al. 2003 [23]

ExG Excess Green 2g-r-b Woebbecke, et al. 1995 [24]

ExGR Excess Green-Excess Red ExG-1,4r-g Meyer & Neto 2008 [25]

ExR Excess Red 1,4r-g Mao, et al. 2003 [23]

GCC Green Percentage Index G/(R+G+B) Richardson, et al. 2007 [26]

GLI Green Leaf Index (2G-R-B)/(2G+R+B) Louhaichi, et al. 2001 [27]

GR Simple red-green Ratio G/R Gamon & Surfus 1999 [28]

GRVI Green Red Vegetation Index (G-R)/(G+R) Motohka, et al. 2010 [29]

HI Primary Colours Hue Index (2*R-G-B)/(G-B) Escadafal, et al. 1994 [30]

HUE Overall Hue Index atan(2*(B-G-R)/30,5*(G-R)) Escadafal, et al. 1994 [30]

IKAW Kawashima index (R-B)/(R+B) Kawashima & Nakatani 1998 [31]

IOR Iron Oxide Ratio R/B Segal 1982 [32]

IPCA Principal Component Analysis Index 0.994*|R−B| + 0.961*|G−B| + 0.914*|G−R| Saberioon, et al. 2014 [33]

MGRVI Modiϐied Green Red Vegetation Index (G2-R2)/(G2+R2) Bending, et al. 2015 [34]

MPRI Modiϐied Photochemical Reϐlectance Index (G-R)/(G+R) Yang, et al. 2008 [35]

MVARI Modiϐied Visible Atmospherically Resistant Vegetation Index (G−B)/(G+R−B) Yang, et al. 2008 [35]

NDI Normalized Difference Index 128*(((G-R)/(G+R))+1) Mcnairn & Protz 1993 [36]

NGBDI Normalized Green Blue Difference Index (G-B)/(G+B) Du & Noguchi 2017 [37]

NGRDI Normalized Green Red Difference Index (G-R)/(G+R) Gitelson, et al. 2002 [38]

RCC Red Chromatic Coordinate Index R/(R+G+B) De Swaef et al. 2021 [19]

RGBVI Red Green Blue Vegetation Index (G2-(B*R))/(G2+(B*R)) Bending, et al. 2015 [34]

PRI Photochemical Reϐlectance Index R/G Gamon, et al. 1997 [39]

SAVI Soil Adjusted Vegetation Index (1,5*(G-R))/(G+R+0,5) Li, et al. 2010 [40]

SCI Soil Colour Index (R-G)/(R+G) Mathieu, et al. 1998 [41]

SI Spectral Slope Saturation Index (R-B)/(R+B) Escadafal, et al. 1994 [30]

TGI Triangular Greenness Index G-0,39*R-0,61*B Hunt, et al. 2013 [42]

VARI Visible Atmospherically Resistant Vegetation Index (G-R)/(G+R-B) Gitelson, et al. 2002 [38]

VDVI Visible Band-Difference Vegetation Index (2G-R-B)/(2G+R+B) Wang, et al. 2015 [43]

VEG Vegetative Index G/(R0,667*B0,334) Hague, et al. 2006 [44]

VIgreen Vegetation Index Green (G-R)/(G+R) Gitelson, et al. 2002 [38]

vNDVI Visible NDVI 0,5268*(r-0,1294*g0,3389*b-0,3118) Costa, et al. 2020 [13]

WI Woebbecke Index (G-B)/(R-G) Woebbecke, et al. 1995 [24]

R: Red Band; G: Green Band; B: Blue Band; r: R/(R+G+B); g: G/(R+G+B); b: G/(R+G+B).
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GLI, GR, HUE, MGRVI, MVARI, RCC, RGBVI, RGI (same as PRI), 
TGI, VEG, vNDVI, WI (Figure 2).

Conclusion
Based on the examination of the most common 37 RGB 

indices found in the literature using the objective similarity 
method, we can therefore speak of 16 independent indices. 
It is important to emphasize that this does not mean that 
redundant indexes are unnecessary, but only that during 
image data processing, we can even use several indexes to 
answer a question, which will probably give a similar result. 
During the comparisons, we ignored the original applicability 
of the given indices, that is, on what type of vegetation they 
were ϐirst used. However, when solving the given problem, this 
aspect must also be considered before the index is selected.

Further investigation can be performed on several types of 
vegetation and the 16 types of indices can be interpreted. But 
perhaps the most important question is which index gives the 
most similar results to the NDVI index, as this could reduce 
the use of multispectral cameras during vegetation surveys 
with unmanned aerial vehicles (UAVs).

So far, we have not found works of a similar nature and 
purpose in the literature that is, where indexes were compared 
using an objective statistical method. The comparison of the 
vegetation indices was only aimed at which RGB indices give 
similar results as the multispectral (MS) indices, tested on a 
speciϐic type of vegetation [13-18]. The present work does not 
examine the similarity of the RGB and MS indices on a speciϐic 
vegetation, but independently of the vegetation, namely in an 
objective statistical manner. Thus, the results are most likely 
true for most vegetation. 

Future developments include the creation of an open image 

(QGIS) software based on the formulas shown in Table 1, and 
then each index image was created in two ϐile formats. As 
a ϐirst step, we created a "false color" image; with the same 
colour scale for each index, where the red color represents 
the negative or 0 value, while the blue color represents the 
more positive values. This way you can easily compare the 
completed index images. As a second step, the index image was 
saved as a grayscale image since the mathematical method for 
objective comparison only handles grayscale JPG images.

The pairwise comparison of the index images was done 
based on the structural similarity index [11], which results 
in a value between -1 and +1, where -1 represents the 
complete difference between the two images, while + 1 for a 
complete match. The comparisons were made in the Python 
Programming Language with the "scikit-image" program 
package, which also includes the SSIM method [12].

Results
As a result of the comparisons, we obtained a similarity 

matrix, which gives the pairwise similarity value of each index. 
We considered only indices with a pairwise SSIM value ≥ 0.9 
to be the same. Based on the values of the similarity matrix, 
the following indices show complete agreement (the formulas 
are the same, so SSIM = 1):

•  ExG = GCC (for the exact name of the indexes see Table 1)

•  GLI = VDVI

• GRVI = MPRI, NDI, NGRDI, VIgreen (of course these 
indices are also the same)

• IKAW = SI

During the examination of further similarities, we obtained 
7 groups (Table 3) in which the SSIM value of the indices is 1.0 
> x ≥ 0.9.

Out of the 37 indexes, 28 indexes are included in the above 
7 groups. From these groups, we selected one characteristic 
index that best characterizes the given group (by visual 
comparison), these are MGRVI, RGBVI, GCC, MVARI, GLI, VEG, 
and TGI. The remaining 9 indices can be considered unique, 
i.e. not like any other index, they are: BGI, BI, ExB, GR, HUE, 
RCC, PRI, vNDVI, and WI.

Thus, as a result, the 38 indexes can be considered a total 
of 16 different indexes, which are as follows: BGI, BI, ExB, GCC, 

Table 2: Information content and self-similar spectral fractal dimension of the bands of the test image.

Band (S)FD, S [bit] Number of unique 
pixels

SFD DSR Number 
(8-bit)

SFD DSR Number 
(16-bit)

SFD DSR Number 
(real bit)

EW-SFD DSR Number (real bit - 
valuable containing) Entropy

Red 8 256 1 0,8314 1,0000 0,9652 7,6156
Green 8 256 1 0,8314 1,0000 0,9479 7,4693
Blue 8 256 1 0,8314 1,0000 0,8660 7,4777

Red, Green 8 18908 1,7510 1,4641 1,7510 1,5675 13,0449
Red, Green, 

Blue 8 270561 2,4699 1,9826 2,4699 2,2178 16,5068

Table 3: Groups of similar indices (SSIM 1.0 > x ≥ 0.9).
1. Group 2. Group 3. Group 4. Group 5. Group 6. Group 7. Group

GRVI BCC CIVE HI GLI IOR IPCA

ExGR BRVI ExG MVARI VDVI VEG TGI
ExR IKAW GCC

MGRVI NGBDI
MPRI RGBVI
NDI SI

NGRDI
SAVI
SCI

VARI
VIgreen
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Figure 2: Individual indices obtained as a result of comparison.
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database suitable for the presented SSIM-based comparative 
studies based on various aspects (UAVs, recording parameters, 
image sensor devices and types, image ϐile formats, vegetation 
types, and vegetation periods). Thus, based on the various 
aspects above, we will be able to objectively compare the 
pictures. Hopefully, we will be able to report on their results 
soon.
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