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Introduction
Biodiversity provides the base and sustenance of 

ecosystems and, from a human point of view, it is considered 
the basis of agriculture, the source of all recent crops and 
livestock species domestic since the beginning of human 
civilization [1]. Indeed, from the beginning of its history, 
humanity resorted to the Vegetable Kingdom in order to 
obtain feed, ϐlavors, and medicine. 

Genetic variability is one of the pillars of neo-Darwinism 
and it is responsible for the existing biodiversity. 

The polyploidization phenomenon also named the whole 
duplication genome and its consequences on the plant genome 
are one of the main sources of this variability.

Discussion
According to Levin [2], polyploidy can greatly alter the 

genetic, biochemistry, cytology, physiology and behavior 
of organisms. In plants, these modiϐications can range from 
evident phenotypic changes to not-so-noticeable changes at 
the molecular level. Among noticeable phenotypic changes, 
it is expectable to observe increases in organ size (and 
biomass), intensiϐication of colors, changes in the architecture 
of the plant, and slowing down of growth. Others are observed 
at tissue and cytological levels, such as stomata and pollen 
grains sizes, and larger trichomes. At the molecular level, 
polyploidization has given plants great adaptive capacity due 
to the development and expansion of important gene families 
responsible for the process of plant speciation, diversiϐication, 
and evolutionary innovation [3].

Phenotypically, the most immediate and noticeable 

effect of polyploidy in plants is the increase in cell size. The 
volume of tetraploid cells generally increases by 1.5 times 
relative to that of their diploid progenitors [4]. Because of 
this, various authors suggest that metabolism and growth are 
retarded in polyploid cells due to alterations in the geometric 
relationships between the nucleus and the rest of the cell 
[2]. Likewise, at the cellular level, the duration of mitosis is 
another parameter closely correlated with the amount of 
nuclear DNA. In this sense, the reduction of the number of cell 
divisions during development is a characteristic of polyploidy. 
Certain physical parameters of the plant, including mitotic 
cycle time, duration of mitosis, chromosome size, and nuclear 
and cellular volumes, are determined by the amount of DNA 
per nucleus regardless of the DNA information content. The 
contribution of DNA content, together with the increase in cell 
size, is perhaps the most consistent effect of polyploidization 
[5].

As a consequence of the increase in cell size, the original 
phenotype is modiϐied, resulting in increases in the width/
length ratio and size of both leaves and ϐlowers, as well 
as increases in the thickness and color of the leaves. 
These characteristics are frequently the target of induced 
polyploidization in horticultural and ornamental species [6].

Another important effect associated with polyploidization 
is the increase in the production of secondary metabolites, 
which has been observed in various aromatic and medicinal 
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species [7]. Other features observed are greater drought 
tolerance, resistance to pests, and longer ϐlowering times [8].

The importance of these changes lies in the fact that they 
could allow polyploids to access new ecological niches [9] or, 
from a human beneϐit point of view, increase the aptitude of 
the original genotype as a crop.

As it was mentioned above, polyploidization is one of the 
mechanisms that can lead to adaptations to different selection 
pressures produced by the environment. It is not a coincidence 
that humanity has emulated nature using technological 
procedures that allow the obtaining of artiϐicial polyploids as 
a source of genetic variability, in order to increase quality and 
productivity, as well as the adaptability of crops to prevailing 
climate change, to overcome barriers of sexual incompatibility 
due to imbalance of chromosomes between species and to 
obtain triploid hybrids without seeds [10].

The stability of polyploids in angiosperms implies that 
this state of the genome has an adaptive meaning and that it 
is positively selected [9]. In this sense, the main advantages 
that polyploidy individuals have with respect to the original 
parents are genome buffering, the increasing of allelic 
diversity and heterozygosity, generating novel phenotypic 
variations, especially in allopolyploids (Udall and Wendel 
2006). Some of these traits, such as larger organ sizes (leaves, 
ϐlowers, etc.), higher biomass, tolerance to drought, resistance 
to pests, diverse ϐlowering time, and other modiϐications 
could allow polyploids to occupy new ecological niches [9]. 
For breeders, these characteristic polyploid traits are very 
attractive; these genotypes are more likely to be selected for 
agronomic uses [8]. Polyploidization is recognized as one of 
the most important and frequent tools used in plant breeding.

Both natural and artiϐicial polyploids are used for the 
improvement of many of our most important crops, for 
example, among the allopolyploids can be found wheat 
(Triticum aestivum), tobacco (Nicotiana tabacum), peanut 
(Arachis hypogaea), cotton (Gossypium hirsutum) (Udall and 
Wendel, 2006), and Brassica genus (Osborn, 2004). Among the 
crops improved by autopolyploid appear banana, watermelon, 
and apple (triploids), potato and alfalfa (tetraploids), oat and 
chrysanthemum (hexaploids), and dahlia, strawberry and 
pansies (octoploid) [6,10,11].

Likewise, ancestors of cultivars such as maize, soybean, 
and cabbage, apparently experienced the polyploidization 
process (paleopolyploids), although genomic rearrangements 
have concealed the evidence [8]. It is possible that each plant 
species has undergone polyploidy cycles throughout its 
evolution, although we can only recognize recent events [12]. 
In fact, based on its complete genome analysis [13], even the 
small genome of the model organism Arabidopsis thaliana 
seems to have been subjected to polyploidization during its 
evolution. In the last decades, new and improved cultivars 
of economically important species have been developed by 

inducing artiϐicial or synthetic polyploids using mutagenic 
agents (autoploid) [6,7,10].

Eng and Ho [10] make a thorough review of crops improved 
by polyploidization. These authors cite 30 species that include 
horticultural, fruit, ornamental, and forest. A few speciϐic 
examples of different species are cited below. In horticulture 
crops, Muthoni, et al. [14] studied the importance of the level 
of ploidy in the production of Solanum tuberosum. Tanaka [15] 
determined that some of the artiϐicial tetraploids developed 
from Solanum melongena recovered their fertility and showed 
greater resistance to insects and drought. In ornamental 
crops, Rosa rugosa [16], Mecardonia tenella [17], Dianthus 
caryophyllus [18], Gerbera jamesonii [19], Glandularia (hybrid) 
[20], Calendula of icinalis [21], among others, showed an 
increase of ϐlower and/or leaves size; in the case of Petunia 
axillaris [22] increasing plant compactness were reported. In 
fruit crops, it was reported increasing fruit size and quality 
in Actidinia chinenesis [23] and Fortunella crassifolia [24], 
plant compactness in Eriobotrya japonica [25] and reduced 
fertility in Punica grabatarum [26]. Concerning aromatics 
and medicinal plants, an increase in secondary metabolites 
production was reported in Artemesia annua, Catharanthus 
roseus, Centella asiatica, and Lippia integrifolia by Lin, et al. 
[27]; Xing, et al. [28], Kaensaksiri, et al. [29] and Iannicelli, et 
al. [30], respectively. 

Among the major crops, rice – a diploid species – represents 
a very interesting challenge for its improvement through 
polyploidization. In the last years and in order to a better 
understanding of the “polyploid effects” on plant genome, a 
great advance was made increasing the seed setting rate of 
polyploid rice lines (Chen, et al. 2021).

Actual wheat is an allopolyploid obtained after millennia 
of natural and artiϐicial hybridization. T. turgidum (durum 
wheat) originated 500,000 years ago from the hybridization of 
Triticum urartu (diploid) and a diploid extinct species related 
to Aegilops speltoides. Ten thousand years ago, the crossing 
between T. durum (tetraploid) x Aegilops tauschii (diploid), 
originated the artiϐicial hybrid T. aestivum (hexaploid) with 
the common name of bread wheat [31]. 

Wheat is a clear example of how the ploidy level affects 
the phenotype and, from an industrial point of view, the 
properties and uses of each genotype.

The domestication of wheat is the possible cause of the 
origin of our civilization, after all, both species changed 
dramatically their way of life. One might wonder who 
domesticated whom?

As it was previously indicated, polyploidy induces 
phenotypic changes that are of interest to breeders, but the 
impact of polyploidy on agricultural production through 
grafting must also be highlighted. In a recent review work, 
Ruiz, et al. [32] analyzed the advantages of using polyploid 
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rootstocks and scions. These authors reported that, in general, 
grafting improves agronomic traits by combining well-
adapted rootstocks and improved scions. And in particular, 
polyploidy induces large changes in anatomical traits in the 
rootstock as well as in the scion, which also may contribute to 
stress adaptation. 

These authors conclude that although our knowledge 
of the "polyploid effect" on genome expression regulatory 
mechanisms needs to be deepened, the evidence indicates that 
the production of new triploids and tetraploids genotypes is 
relatively simple and the use of these new poliployd varieties, 
both on stems and grafts, could signiϐicantly beneϐit to the 
crops grown using this technique.

According to FAO / IAEA [33], in 2020 there were 3,364 
registered mutants, of which 47 were polyploids obtained 
via colchicine. The condition of polyploidy proϐited for plant 
breeding in several species. In this work, we have cited just 
a few examples. Likewise, it is necessary to keep in mind 
that it is not possible to know in advance the immediate 
practical utility of a polyploid, nor even establish rules for 
their obtaining. However, there are some issues that would 
facilitate the obtaining of a useful artiϐicial polyploid. The 
following aspects should be considered when the development 
of artiϐicial polyploids is required. 

1. Species with low chromosomal numbers.

2. Allogamous species.

3. Species whose agronomic value is the use of their 
vegetative parts (for example, leaves) or their 
reproductive parts (ϐlowers).

4. Species that easily reproduce vegetatively.

5. Species in which spontaneous autoploids already exist. 

Conclusion
Finally, one of the conclusions reached throughout in vitro

polyploidization assays carried out by our group, is that 
polyploidization is not a linear phenomenon. Even if the 
polyploid individuals were obtained under strict experimental 
design in a very controlled way, the autopolyploid obtained 
were not identical to each other and not did seem to be the 
strict “sum of two genomes”. On the contrary, each one of the 
recovered autotetraploid individuals showed their distinctive 
traits being signiϐicantly different in some cases from the rest, 
either in color intensity, organ size, or production of secondary 
metabolites. Moreover, these traits did not always show to be 
"twice" concerning the original. 

This fact indicates that each polyploid individual 
recovered from a trial should be considered an independent 
polyploidization event until it is analyzed and the existence of 
similarities will be demonstrated. 

What is the cause of this phenomenon? Is it from 
physicochemical or biological nature? Does it only depend 
on the affected cell that initiates the new polyploid lineage 
or does the surrounding microenvironment also have to be 
considered?

Besides, since the autopolyploids were developed under in 
vitro conditions, the tissue culture effect must be considered.

Although our knowledge about polyploidization and its 
evolutionary consequences has increased in recent years, the 
adaptability of plants and the "ϐluidity" of their genome still 
have many questions to answer.
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