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Nematodes are the dominant fauna in most soil commu-
nities [1]. There are more than 4100 species of plant-parasitic 
nematodes, which cause severe damage to crops all around 
the world. The magnitude of the losses depends fundamentally 
on population densities in soil and roots, susceptibility of the 
crop, and environmental conditions such as the temperature 
of the soil, which largely affect the development of nematodes. 
Some plant-parasitic nematodes cause severe crop losses to 
food and ϐiber crops [2], annually estimated to be US $78 
billion worldwide [3]. In the Mediterranean area, production 
losses by the root-knot nematodes on the horticultural crops 
have been estimated to be between 15 and 60% [4].

Plant-parasitic nematodes are hidden and unseen 
enemies of crop plants as they are microscopic and are 
present in the soil. They can be grouped as (A) Sedentary 
endoparasites, the cyst and root-knot nematodes, the most 
damaging obligate plant-endoparasitic nematodes affecting 
a wide range of plant species worldwide (Figure 1) [5]; (B) 
Semi sedentary endoparasites, (C) Migratory endoparasites 

Abstract

Plant-parasitic nematodes are ubiquitous in nature and cause large losses in agriculture. 
The current concerns regarding the use of chemical pesticides have increased the interest in 
new control alternatives. One of these is the one based on Bacillus thuringiensis (Bt). These 
Gram-positive bacteria have the ability to synthesize pesticide proteins during sporulation. Some 
of these proteins have nematicidal properties. Studies have shown that preparations of certain 
strains of Bt can prevent or slow down the infestation of phytonematodes. The expression of 
some Bt nematicidal genes in transgenic plants has also demonstrated their eff ectiveness. Bt is 
nowadays an eff ective ecological alternative for controlling plant-parasitic nematodes.

(D) Virus transmitter nematodes, and (E) Stem and leaf 
damaging nematodes. The plant-parasitic nematodes that are 
considered to cause the greatest social and economic impacts 
are: root-knot nematodes (Meloidogyne spp.), cyst nematodes 
(Heterodera and Globodera spp.), root-lesion nematodes 
(Pratylenchus spp.), the burrowing nematode Radopholus 
similis, the migratory endoparasite Ditylenchus dipsaci, the 
pine wilt nematode Bursaphelenchus xylophilus, the reniform 
nematode Rotylenchulus reniformis, the virus vector nematode 
Xiphinema index, the false root-knot Nacobbus aberrans, and 
Aphelenchoides besseyi, an important pathogen of rice [5]. 
In general, nematode infection results in above and ground 
symptoms in plants, like general plant wilting, leaf necrosis, 
chlorosis, leaf dropping, stunted growth, and in the case of 
penetration to the root systems, root gall and knot formation. 
Furthermore, nematicidal infection results in enhanced 
susceptibility to other pathogens [6].

The necessity of increasing the food (crop) production 
by at least 2% every year to assure an appropriate world 
food supply [7] drives the search for agricultural protection 
systems against pests while preserving the environment and 
avoiding the accumulation of chemical residues in nature. 
Bacillus thuringiensis (Bt), is a well-known entomopathogen. 
It is a Gram-positive ubiquitous bacterium distributed 
worldwide. One of its most known characteristics is that 
during sporulation it produces parasporal crystals composed 
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Figure 1: Bt and root-knot nematode. Bacillus thuringiensis spores and crystals (A),
J2 stage of Meloidogyne javanica (B), and tomato roots aff ecte by root-knot 
nematodes (C).
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of pesticide proteins (Figure 1) [8,9]. This bacterium is safe 
for other organisms, including humans [10]. Therefore, Bt-
based compounds have been used as the most successful 
microbial insecticides for decades [11,12] and it is one of the 
most promising biological control agents.

The pesticide proteins produced by Bt are toxic to larvae of 
many insect species and also to nematodes [9,13,14]. To exert 
its toxic action, it is widely accepted that the Bt pesticidal 
proteins included in the crystalline inclusion bodies have 
to be solubilized in the midgut of the susceptible organism. 
After activation and binding to speciϐic midgut membrane 
receptors, several processes can happen, such as the 
activation of intracellular death pathways [15]. Additionally, 
or alternatively, the sequential biding model processes can 
take place: oligomer promotion, insertion in the membrane, 
and pore formation that break the epithelial cells and also 
allow the bacteria to infect hemocoel causing septicemia 
[16,17].

The toxicity of Bt to nematodes is well established since 
1972 when the ϐirst study showing the toxicity of Bt against 
Meloidogyne spp. was published [18]. Seven classes of Bt 
Cry toxins have been reported to have activity against 
nematodes: Cry5, Cry6, Cry12, Cry13, Cry14, Cry21, and 
Cry55 [14,19,20]. In addition, other Bt proteins apart from 
Cry (such as thuringiensin, chitinase, and metalloproteinases) 
are toxic to nematodes (as a review, see [19,21]) which can 
increase its effectivity. As an additional beneϐicial effect, Bt 
can also promote plant growth [22-24]. The mode of action 
of Bt Cry toxins in nematodes is not well established, but it 
is known that carbohydrates are essential for Cry5B toxicity 
to Caenorhabditis elegans, to allow binding and therefore 
toxicity [25], that cadherin acts as a receptor [26] and that Bt 
also targets the intestinal epithelial junctions in this organism 
[27].

The effectivity of Bt in controlling plant-parasitic 
nematodes such as Meloidogyne hapla has been reported, 
after soil drenching with spore-crystal mixtures of Cry6 in 
tomato plants, decreasing galling index and egg masses on 
host root, and reducing the ϐinal number of nematodes in soil 
[28]. Similar results have been obtained against Meloidogyne 
incognita after treating tomato plants with Bt strains, which 
were also able to translocate into the plant tissues [29]. The 
susceptibility of M. incognita to Cry5, Cry6, and Cry55 proteins 
is well established [30,31]. Additionally, it has been published 
that Meloidogyne javanica infestation was reduced after Bt 
treatment [32].

Apart from the conventional use of Bt for crop treatments, 
transgenic Bt crops expressing Lepidopteran and Coleopteran 
active proteins have been developed and commercialized 
since 1996. The Bt crops can control successfully the target 
pests and are planted in several countries in the world since 
the last years of the past century ([33], https://www.isaaa.

org/gmapprovaldatabase/default.asp, last accessed 2nd June 
2022). Similarly, the gene coding for Cry5B protein has been 
transformed in tomato plants and in the fungus Botrytis 
cinerea to control M. incognita and the pine wood nematode 
Bursaphelenchus xylophilus respectively [34,35] with 
successful results in the control of the two phytonematodes. 
Also, it has been reported that tomato roots expressing 
Cry6A decreased M. incognita population [36] and soybean 
transformed with the Cry14 gene showed a reduction of 
soybean cyst nematode Heterodera glycines adults and eggs 
[37]. Indeed, the US Environmental Protection Agency recently 
approved the registration of transgenic soybean GMB151 
targeting the soybean cyst nematode (https://www.isaaa.
org/gmapprovaldatabase/event/default.asp?EventID=562, 
last accessed 2nd June 2022). 

Summarizing, Bt strains or Bt Cry proteins can be excellent 
nematicidal agents that can be part of new generation 
strategies for the control of plant-parasitic nematodes.
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