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Introduction
The beginning of 21st century is marked by global 

scarcity of water resources, environmental pollution and 
increased salinization of soil and water [1]. Increasing human 
population and reduction in land available for cultivation are 
two threats for agricultural sustainability [2]. A saline soil is 
generally deϐined as one in which the electrical conductivity 
(EC) of the saturation extract (ECe) in the root zone exceeds 
4 dS m−1 (approximately 40 mM NaCl) at 25 °C and has an 
exchangeable sodium of 15%. The yield of most crop plants is 
reduced at this ECe, though many crops exhibit yield reduction 
at lower ECes [3,4]. It has been estimated that worldwide 20% 
of total cultivated and 33% of irrigated agricultural lands are 
afϐlicted by high salinity. Furthermore, the salinized areas 
are increasing at a rate of 10% annually for various reasons, 
including low precipitation, high surface evaporation, 
weathering of native rocks, irrigation with saline water, and 
poor cultural practices. It has been estimated that more than 
50% of the arable land would be salinized by the 2050 [4]. 
To meet the projected food demand of 9.3 billion people by 
2050, global agricultural production must be increased by 
60% from its 2005–2007 levels [5]. This urgent need requires 
a large effort to improve agricultural production. One feasible 
way to cope with this challenge is to breed robustly salt-
tolerant crops. Understanding the mechanisms underlying 
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With the global population predicted to grow by at least 25% by 2050, the need for sustainable 
production of nutritious foods is important for human and environmental health. Recent progress 
demonstrate that membrane transporters can be used to improve yields of staple crops, increase 
nutrient content and resistance to key stresses, including salinity, which in turn could expand 
available arable land. Exposure to salt stress aff ects plant water relations and creates ionic stress 
in the form of the cellular accumulation of Na+ and Cl- ions. However,  salt stress also impacts 
heavily on the homeostasis of other ions such as Ca2+, K+, and NO3

- and therefore requires 
insights into how transport and compartmentation of these nutrients are altered during salinity 
stress. Since Na+ interferes with K+ homeostasis, maintaining a balanced cytosolic Na+/K+ ratio 
has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires 
the activity of Na+ and K+ transporters and/or channels. The aim of  this review is to seek answers 
to this question by examining the role of major ions transporters and channels in ions uptake, 
translocation and intracellular homeostasis in plants.

plant salt tolerance would be of beneϐit for breeding such 
crops and mitigating future food shortages. Accumulation of 
high Na+ in the cytosol can not only cause K+ deϐiciency and 
thus disrupt various enzymatic processes, but also impose 
an energetic burden on the cell owing to the requirement of 
organic solute synthesis to compensate for the export of Na+ 
for osmotic adjustment [6]. Thus, understanding how Na+ 
is sensed and transported in plants under saline conditions 
could help researchers or breeders breed crops with robust 
salt tolerance. The present review is focused on the main 
processes that contribute to the overall homeostasis of 
the main ionic constituents of salinity and also analyses 
which speciϐic membrane transporters are believed to be 
involved in uptake, extrusion, long distance transport and 
compartmentalization of salt at the cellular and tissue level. 
Figure 1 gives an overview of the main classes of monovalent 
ion transporters that totals hundreds of isoforms, often 
derived from large gene families. In the following sections, 
we will analyze the potential roles of transporter classes and 
speciϐic proteins regarding uptake, efϐlux translocation and 
compartmentation of salt. In addition, these sections will also 
evaluate which of these provide promising targets in the quest 
to improve crop salt tolerance.

Na+ sensing in plants 

Possible salt sensors for perception of Na+: Unlike in 
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animal cells, no speciϐic salt sensors have been identiϐied in 
plant cells to date. Thus, our knowledge of how plants perceive 
salt stress and thus decode the corresponding signals remains 
limited. Cramer, et al. [7] found that Ca2+ can mitigate the loss 
of membrane integrity and minimize cytosolic K+ leakage and 
proposed that displacement of Ca2+ by Na+ from the root cell 
plasmalemma is a primary response to salt stress. However, 
Kinraide [8] showed that the Ca2+-displacement hypothesis is 
often of minor importance to salt stress response. SOS1 (salt 
overly sensitive 1) Na+/H+ antiporters [9], histidine kinases 
[10], and AHK1/ATHK1 [11] have also been suggested to 
be potential salt sensors or osmo-sensors. Shabala, et al. 
[12] suggested some putative salt stress sensors/proteins 
involved in early signaling events, including exchangers and 
transporters such as SOS1 Na+/H+ antiporters, NCX Na+/Ca2+ 
exchangers, NSCC/NADPH oxidase tandem, mechanosensory 
channels and transporters, cyclic nucleotide receptors, purino-
receptors, annexins, and H+-ATPase/GORK tandem. The 
binding of salt stress-induced increases of cyclic nucleotides 
to their receptors, e.g. CNGCs, can activate this CNGC Ca2+-
permeable channels, and thus the increase of cyclic nucleotides 
could be translated into a massive cytosolic Ca2+ uptake, which 
can affect Ca2+ signaling [12]. Similarly, sensing of salt-induced 
eATP (extracellular ATP) by plasma membrane purinoceptors 
can be translated into other signaling events, such as ROS 
(reactive oxygen species) and cytosolic Ca2+ signature [13]. 

Root meristem zone: a tissue harboring salt sensors?: 
Root is the ϐirst plant organ that encounters salinity. Thus, 
Na+ enters ϐirst into roots and is then transported to shoots. 

Wu, et al. [14] found that salt-tolerant bread wheat varieties 
had signiϐicantly higher cytosolic Na+ in the root meristem 
zone than salt-sensitive varieties; although no difference in 
vacuolar Na+ ϐluorescence intensity was found in the root 
meristem zone. This ϐinding suggests that salt-tolerant wheats 
could have more ability to buffer or tolerate increased Na+ 
in the cell cytosol in root meristem zone than salt-sensitive 
wheats. Further, by removal of the root meristem zone from 
salt-tolerant wheat varieties, Na+ distribution in mesophyll 
cells was altered and a salt-sensitive phenotype resulted [15]. 
Taken together, these ϐindings suggest that the root meristem 
zone can act as a salt stress sensor, or at least a tissue that 
harbors salt stress-sensor components.

Transporters and channels involved in na+ transport in 
plants under salt stress 

The importance of Na+ exclusion in plant salt tolerance: 
The importance of Na+ exclusion in protecting plants against 
salinity stress is widely accepted. Under salt stress, net Na+ 
accumulation in plant cells is determined by the ion-exchange 
activity of Na+ inϐlux and efϐlux. Na+ inϐlux occurs mainly 
through ion channels such as the high-afϐinity K+ transporter 
HKT and non-selective cation channels (NSCC), and Na+ efϐlux 
is known to be mediated by SOS1, a Na+/H+ antiporter. In 
the presence of elevated levels of external Na+, under saline 
conditions, Na+ efϐlux from plant cells is an active process [16]. 
To date, SOS1, expressed mainly in the root apex in Arabidopsis 
[17], is the only transporter that has been characterized in Na+ 

export from the cytosol to the apoplast. Loss of SOS1 function 
resulted in a hyper-salt-sensitive phenotype in the halophytic 
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Arabidopsis relative Thellungiella salsuginea [18]. This ϐinding 
further conϐirmed the important role of the SOS1 Na+/H+ 
antiporter in Na+ exclusion and overall plant salt tolerance. 
Moreover, to date, studies showing the important role of Na+ 
exclusion in overall salt tolerance have been based mostly on 
shoot/leaf or even whole-plant Na+ content [19-24]. Whether 
this restricted Na+ accumulation in shoot/leaves is achieved 
mainly by root Na+ export or shoots Na+ exclusion, or by 
both of these processes with tight regulation/coordination 
at different growth stages and time scales, however, has 
remained unclariϐied.

The importance of vacuolar Na+ sequestration in plant 
salt tolerance: SOS1-mediated Na+ export from cytosol to 
apoplast (against Na+ gradient) is an energy-consuming 
process. Given that most of the cell volume is occupied by 
vacuole and most metabolisms occurs in the cytoplasm, 
one way for plants to alleviate Na+ toxicity in the cytosol is 
to store Na+ in the vacuole. Vacuolar Na+ sequestration is a 
common and important mechanism in plant salt tolerance, 
and is mediated by Na+/H+ antiporters [25-27]. Prevention of 
cytoplasmic Na+ elevation, maintenance of the cytosolic K+/
Na+ ratio, and control of vacuolar osmotic potential in plants 
under salt stress can be achieved by, or is associated with, 
vacuolar Na+ sequestration [28]. To date, the best-known 
transporter for vacuolar Na+ sequestration is the NHX1 Na+, 
K+/H+ exchanger. Overexpression of NHX1 improves salt 
tolerance in many species including Arabidopsis [25], tomato 
[29], rice [30], and tobacco [31], showing the importance of 
vacuolar Na+ sequestration in plant overall salt tolerance. Salt-
tolerant wheat varieties showed signiϐicantly higher vacuolar 
Na+ ϐluorescence intensity in mature root cells than did 
sensitive varieties [14,32]. Under overexpression of OsNHX1, 
transgenic rice cells survived better under saline condition 
and showed signiϐicantly higher growth rate and total Na+ 
content than the wild type (WT) [33]. Taken together, these 
ϐindings show clearly that vacuolar Na+ sequestration is an 
important trait contributing to plant overall salt tolerance. 
After sequestration of Na+ in vacuoles, another important 
concern is to prevent Na+ leakage from vacuole to cytosol. Loss 
of control of this step could result in futile Na+ cycling between 
vacuole and cytosol, imposing a high energy burden on the 
plant. FV (fast-activating) and SV (slow-activating) channels 
are tonoplast Na+ and K+-permeable channels that control 
Na+ leakage from vacuole to cytosol. Negative control of FV 
and SV channel activity has been shown in the salt-stressed 
halophyte quinoa to reduce such leakage [34], suggesting 
that efϐicient control of Na+ leakage from vacuole to cytosol 
could be an important mechanism in plant overall salt stress 
tolerance (Figurer 2). 

Control of xylem Na+ loading and unloading: Roots 
absorb ions and then transfer them to shoots via xylem 
loading, so that control of xylem Na+ loading is important in 
plant overall salt tolerance. To date, SOS1 Na+/H+ antiporter 
[16,35,36], CCC co-transporter [37], and SKOR channel (if xylem 

loading of Na+ is passive) [38] have been shown to be involved 
in xylem Na+ loading (Figure 2). Shi, et al. [16] suggested that 
SOS1 plays a role in xylem Na+ loading in Arabidopsis under 
mild salt stress. Yadav, et al. [39] showed that enhanced 
xylem Na+ loading and higher overall salt tolerance was 
achieved in tobacco by overexpression of SbSOS1. Recently, a 
reduction in overall net xylem Na+ loading and accumulation 
in the shoot and thus improved salt tolerance were observed 
in wheat Nax (locus for Na+ exclusion) lines following down 
regulation of SOS1-like Na+/H+ antiporter [40]. Besides SOS1, 
a CCC co-transporter that is preferentially expressed at the 
xylem/symplast boundary has also been suggested to play 
a role in xylem Na+ loading [37] (Figure 2). With respect to 
Na+ transport in xylem, besides Na+ loading into xylem, Na+ 
unloading from xylem is another important mechanism. HKT 
transporters play a main role in this process. Sunarpi, et al. 
[41] showed that the AtHKT1 transporter located on the 
plasma membrane in xylem parenchyma cells in leaves played 
a role in Na+ unloading from xylem vessels to parenchyma 
cells. Huang, et al. [42] suggested that TmHKT7-A2, which 
is associated with Nax1 locus, could control xylem Na+ 
unloading in roots and sheaths. Also, Byrt, et al. [20] showed 
that HKT1;5 is strongly associated with Nax2 locus in durum 
wheat and its orthologous locus Kna1 in bread wheat removes 
Na+ from xylem in roots and leads to a high K+/Na+ ratio in 
leaves. Jaime-Perez, et al. [43] showed that the SlHKT1; 2 Na+-
selective transporter plays an important role in Na+ unloading 
from xylem in tomato shoots and thus modulates its Na+ 
homeostasis under salinity (Figure 2).

Na+ recirculation from shoot to root via phloem: Na+ 
recirculation from shoots to roots has been suggested as 
an efϐicient way to protect leaf cells from Na+ toxicity [44]. 
Because leaf vacuolar Na+ sequestration ability is poor, Na+ 
recirculation from shoots to roots via phloem sap is probably 
the main mechanism involved in prevention of Na+ delivery to 
leaf cells in most salt-sensitive plants [45]. Apart from shoot 
growth rate, the rate of recirculation of Na+ to the roots via 
phloem has been suggested as an important factor affecting 
Na+ concentrations in shoots [46]. In several species, such as 
lupine, clover, sweet pepper, and maize, recirculation of Na+ 
to roots via phloem played a role in overall salt tolerance 
[47]. Berthomieu, et al. [48] showed that expression of the 
AtHKT1 gene was restricted to phloem tissues in all organs 
in Arabidopsis, and that the AtHKT1 gene was involved in Na+ 
recirculation from shoots to roots probably by mediating 
Na+ loading into phloem sap in the shoots and unloading it 
in roots. However, in Arabidopsis, a role of AtHKT1 in control 
of both Na+ accumulation in roots and retrieval of Na+ from 
xylem, without involvement in root inϐlux or recirculation 
in the phloem, was suggested by Davenport, et al. [46]. 
Ren, et al. [49] showed that HKT-type transporter encoded 
by SKC1 (shoot K+ concentration 1) gene might be involved in 
the recirculation of Na+ by unloading it from the xylem in rice. 
Kobayashi, et al. [50] found that an OsHKT1;5 Na+ selective 
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transporter associated with the SKC1 locus is localized in cells 
adjacent to the xylem in roots, and is involved in mediating 
Na+ exclusion in phloem to protect young leaf blades of rice 
under salt stress (Figure 2).

Na+ transporters: To date, most members of the cation/
proton antiporter (CPA) family have been identiϐied as Na+/
H+antiporters (subclass 1), but a few are K+/H+ antiporters, 
including CHX13, CHX17, CHX20, and CHX23 in the CPA2 family 
[51]. Besides vacuolar Na+ sequestration, another important 
pathway for controlling Na+ distribution in plant cells is Na+ 
exclusion/export. To date, SOS1 Na+/H+ antiporter is the only 
reported antiporter responsible for Na+ export from plant cells 
[52,53]. SOS1 activity is regulated by SOS2, a serine/threonine 
protein kinase (CIPK24) and SOS3, a myristoylated calcium-
binding protein (CBL4) [54-56]. SOS3 recruits SOS2 to the 
plasma membrane, and then this CBL-CIPK complex activates 
SOS1 by phosphorylation, dramatically increasing Na+/H+ 
exchange activity (Figure 3) [16]. Moreover, the existence of 

an ATP-driven Na+ transport mediated by a Na+-ATPase at 
the plasma membrane has been shown in lower plants, such 
as the marine alga Heterosigma akashiwo [57] and the moss 
Physcomitrella patens [58].

The role of HKT1: X transporters in Na+ unloading 
and recirculation in salt stressed plants was mentioned in 
the previous sections. For example, Kobayashi, et al. [50] 
found that the OsHKT1;5 Na+ selective transporter, which is 
associated with the SKC1 locus, is localized in cells adjacent to 
the xylem in roots, and is involved in mediating Na+ exclusion 
in phloem to protect young leaf blades of rice under salt stress.

Na+ channels: NSCCs are a large family of channels that 
lack selectivity for cations. They are typically permeable to 
wide range of monovalent cations [59] and are located on 
both the plasma membrane and the tonoplast (Figure 2). They 
can be divided into voltage-dependent NSCCs (depolarization-
activated, hyper-polarization-activated), voltage-independent 
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NSCCs, ROS-activated NSCCs, amino acid-activated NSCCs, 
cyclic nucleotide-gated NSCCs, etc. Electrophysiological 
studies suggest that Na+ inϐlux across the plasma membrane 
occurs via NSCC/VIC in root cortical cells [16,60,61]. Maathuis 
and Sanders [62] found that cyclic nucleotide-regulated VIC 
(voltage-independent cation channels) channels showed no 
selectivity among monovalent cations in Arabidopsis root cells. 

Molecular regulation of Na+ trans Moreover, the 
existence of an porters/channels in response to salt 
stress: To date, SOS1 is the only known anti-transporter 
responsible for Na+ export from cytosol to apoplast. Usually, 
expression of the SOS1 gene is up-regulated in salt stressed 
plants [52,63,64]. The functional activity of SOS1 mediated 
Na+ export could be inϐluenced by SOS2 [54], SOS3 [56], the 
assembly of SOS2-SOS3 complex [65], and H+-ATPase, which 
can increase H+ efϐlux to energize Na+ efϐlux through SOS1 
antiporters [66]. SOS1 activity could also be inϐluenced by 
ROS or ROS signaling-associated components. SOS1 mRNA 
stability is increased in Arabidopsis under H2O2 treatment, 
and NADPH oxidase is also involved in the up-regulation of 
SOS1 mRNA stability [67]. Besides, SOS1 interacts with RCD1 
(radical-induced cell death), a regulator of oxidative stress 
responses, and functions in oxidative stress tolerance in 
Arabidopsis [68]. Reduced ROS production and increased SOS1 
expression was found in pao1pao5 (polyamine oxidase, PAO) 
Arabidopsis mutants than in the WT under salt stress [69]. 
As with SOS1, overexpression of NHX1 to increase plant salt 
tolerance has been shown in many plant species [25,70,71]. 
Although the role of AtNHX1 in K+ accumulation in the vacuole 
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was discovered in recent years [72-74], this ϐinding cannot 
completely rule out the involvement of NHX1 in vacuolar 
Na+ sequestration, especially under high salinity [36,75]. 
Usually, the NHX1 gene is up-regulated in salt-stressed plants, 
including Arabidopsis [76], barley [77], and alfalfa [78]. 
However, a clear decrease in the transcript level of NHX1 in 
wheat roots was observed under salt stress, while almost no 
change in the NHX1 transcript level was found in leaves [79]. 
Moroever, in contrast to the successfully improved salt stress 
tolerance in tomato [29], rice [30], and tobacco [31], overall 
salt tolerance was not enhanced in Arabidopsis [74] and 
barley [78] by expression of the NHX1 Na+/H+ exchanger gene. 
These conϐlicting results raise the questions of the importance 
of tissue speciϐicity in plant salt-stress tolerance. NHX1 is 
known to be fueled by an H+ gradient across the tonoplast 
that is maintained by vacuolar H+-ATPase and vacuolar PPase 
[80]. Expressing a halophyte vacuolar H+-ATPase subunit 
c1 (SaVHAc1) in rice plants resulted in higher chlorophyll 
content and yield than in its WT [81]. Overexpression of 
vacuolar PPase AVP1 improved salt tolerance in transgenic 
Arabidopsis relative to the WT, showing a healthy growth of 
transgenic Arabidopsis in the presence of 250 mmol L−1 NaCl 
compared with the WT, which died after 10 days [82]. These 
results suggest that manipulating vacuolar H+-ATPase and 
PPase could allow regulating NHX1 activity and eventually 
plant overall salt tolerance. Other known factors in the 
regulation of NHX1 activity are SOS2 [83] and CaM15 [84]. 
Also, CBL10 can interact with SOS2 to protect Arabidopsis 
shoots from salt stress [85]. Tang, et al. [86] showed that 
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PtCBL10A and PtCBL10B interact with PtSOS2 in the vacuolar 
membrane to regulate shoot salt tolerance in poplar. Thus, 
CBL10 is also proposed to regulate NHX1 activity [87]. Two 
recent reviews have also focused on molecular regulation of 
Na+ transporters/channels in response to salt stress [36,88].

Transporters involved in cl- uptake

Cl- is a major solute in plant vacuoles, particularly during 
salt stress, and is involved in both turgor and osmoregulation 
[89]. Although there is a substantial amount of information 
regarding K+ and Na+ transport in plants, very little is known 
about the molecular mechanism behind the substantial Cl- 
inϐlux that results from salinization [90]. Plants contain CLC 
type anion channels which are believed to participate in 
turgor regulation, stomatal movement and anionic nutrient 
transport such as NO3

- [91]. Although the transcript abundance 
of several CLCs is affected by salinity [92], they are unlikely to 
contribute to root Cl- uptake: Firstly, plant CLCs have only been 
detected at endomembranes which appears to exclude a role 
in Cl- uptake and secondly the thermodynamics of Cl- uptake 
rule out passive channel type mechanisms. A second class 
of potential Cl- transporters is formed by the cation chloride 
cotransporters (CCCs) encoding one gene in Arabidopsis and 
two genes in rice. AtCCC, expressed in root and shoot tissues, 
probably functions as a 2Cl-:K+:Na+ cotransporter. Loss of 
function of AtCCC in Arabidopsis led to a changed root: shoot 
Cl- ratio but also to a large increase in net Cl- uptake arguing 
against a role of AtCCC in the uptake of this ion [37]. 

In addition to Na+, Cl- compartmentation is also important 
for salt tolerance, as elevated levels of Cl- in the cytosol may 
be harmful, particularly in the case of citrus [93]. Since the 
vacuole is moderately positive with reference to the cytoplasm, 
part of the vacuolar Cl- sequestration could proceed through 
ion channels and several voltage-gated anion channels of the 
CLC family have been detected in the tonoplast of various 
species. In Arabidopsis, CLCa was recently shown to function 
primarily as a H+ coupled antiporter to drive vacuolar nitrate 
accumulation [94], whereas CLCc may also be involved in NO3

- 
homeostasis rather than vacuolar Cl- sequestration. However, 
CLC transcription has been found to respond to salinity: In 
rice, OsCLCa was signiϐicantly upregulated in salt sensitive 
cultivars in response to salinity stress and OsCLCc, which 
is expressed in both leaves and roots, showed transcript 
reduction in the chloride accumulating salt tolerant Pokkali 
variety [95]. Diédhiou and Golldack [92] showed a coordinated 
regulation of anion and cation homeostasis in salt-treated rice 
and suggested a function for OsCLCc in osmotic adjustment at 
high salinity. A similar co-regulation was recorded in soybean 
for NHX1 and CLC1 [96]. Nakamura, et al. [97] showed that 
the same CLC channels partially complemented the yeast gef1 
mutant which lacks the yeast CLC channel. In conclusion, these 
ϐindings suggest that CLC type anion channels are important 
in mediating Cl- sequestration in the vacuole (Figure 2).

Potassium transporters in plants: involvement in k+ 
acquisition, redistribution and homeostasis

Potassium is a major plant nutrient which has to be 
accumulated in great quantity by roots and distributed 
throughout the plant and within plant cells. Membrane 
transport of potassium can be mediated by potassium 
channels and secondary potassium transporters. Uptake and 
distribution of K+ in plant cells is carried out by a variety of 
transporter proteins categorized into several families with 
varied structures and transport mechanisms that comprise 
the channel families Shaker-like voltage-dependent, the 
tandem-pore (TPK), and the two-pore channels (TPC) [98], the 
carrier-like families KT/HAK/KUP [99,100], HKT uniporters 
and symporters [101], and cation-proton antiporters (CPA). 
The CPA family is the largest one and includes the NHX, CHX, 
and KEA antiporters [102] (Figure 2).

K+-Selective Channels: The ϐirst K+ transporter with a role 
in nutrient uptake was the Shaker-like, voltage-gated, and K+-
selective channel AKT1 [103]. Plant voltage-gated K+ channels 
are divided into three subfamilies regarding their response 
to the membrane potential [104]: (1) Inward-rectifying 
(Kin) channels that in Arabidopsis include AKT1, AKT6, 
KAT1, and KAT2; they open at hyperpolarized membrane 
potentials allowing the uptake of K+. (2) Outward-rectifying 
(Kout) channels that mediate K+ release because they open 
at depolarized membrane potentials; this group is composed 
of SKOR and GORK channels. (3) Weakly rectifying (Kweak) 
channels that can mediate both K+ uptake and release, and 
whose Arabidopsis representative is AKT2. In addition, the 
Arabidopsis KC1 (KAT3) is an electrically silent Shaker-like 
protein that interacts with and regulates functionality of the 
Kin channels AKT1, KAT1, KAT2, and AKT2, but not the Kout 
channels [105].

K+ non-Selective Channels: Electrophysiological 
recordings of channel activities in the tonoplast have identiϐied 
fast vacuolar (FV), slow vacuolar (SV), and K+-selective vacuolar 
(VK) cation channels that mediate the release of vacuolar 
K+ [98]. The VK currents have been assigned to two-pore K+ 
(TPK) channels [106]. TPK1, 2, 3, and 5 of Arabidopsis are 
located in the tonoplast, while TPK4 is in plasma membrane. 
TPK1 currents are independent of the membrane voltage 
but sensitive to cytosolic Ca2+ and regulated by calcium-
dependent protein kinases (CDPKs) and 14-3-3 protein 
binding (Figure 3) [107]. In Arabidopsis, the TPC1 channel 
accounts for the SV current [108]. TPC1 is voltage-dependent 
and non-selective, allowing K+ and Na+ to permeate toward 
the cytosol. Whether TPC1 also permeates Ca2+ or Ca2+ is only 
an effector of TPC1 gating is a matter of controversy [109]. 
TPC channels are activated by a decrease in transmembrane 
potential and increased cytosolic Ca2+, and inhibited by low 
luminal pH and Ca2+. The ubiquitous nature of TPC channels 
and the magnitude of the SV/TPC currents are such that TPC 
channels are capable of contributing substantially to cellular 
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K+ homeostasis. However, plants lacking TPC1 function are 
not impaired in growth and development. This may indicate 
that the TPC1 channel is closed most of the time and opens 
upon speciϐic inputs or under stress. Current thinking is that 
TPC1 is part of a Ca2+/ROS relay that propagates stress signals 
[110,111].

KT/HAK/KUP transporters: Proteins of the KT/HAK/
KUP family are present in plants, fungi, bacteria, and even 
viruses [112,113], and they are often associated with K+ 
transport across membranes and K+ supply. Members of 
this family have been widely associated with high-afϐinity K+ 
uptake from the soil, while others may function in both low-
afϐinity and/or high-afϐinity transport [59,114] and other 
roles related, for example, to K+ translocation, control of 
water mouvement at the plant level, salt tolerance, osmotic/ 
drought responses, transport of other alkali cations, and 
developmental processes in plants, such as root hair growth 
and auxin distribution [100,113]. These diverse functions of 
KT/HAK/KUP transporters may all result from their critical 
roles in cellular K+ homeostasis (Figure 2).

HKT uniporters and symporters: The High afϐinity 
K+ Transporters (HKTs) facilitate Na+-selective uniport or 
Na+-K+ symport with a channel-like activity [115] (Figure 2).
Phylogenetic and functional analyses distinguished two 
HKT subfamilies [116]. Members of subfamily 1 (HKT1) are 
ubiquitous in plants, Na+-selective, and mostly involved in Na+ 
recirculation through vascular tissues, as best exempliϐied by 
AtHKT1;1 [41]. Members of subfamily 2 (HKT2) have been 
found only in monocotyledonous species. Although they are 
all K+-permeable, mechanistically HKT2s can operate as either 
Na+-K+ symporters or K+-selective uniporters (reviewed by 
Benito, et al. [115]). HKT2-like proteins of cereals have been 
involved in K+ nutrition.

Cation-proton antiporters (CPA): The recent meta-
analysis of a large number of publications reporting tolerance 
phenotypes imparted by exchangers of the Cation/Proton 
Antiporter Family 1 (CPA1, which includes NHX proteins) 
concluded that the effect on K+ status was generally more 
pronounced than on Na+ content [117]. An informative 
work showed that overexpression of the AtNHX1 in tomato 
induced K+-deϐiciency symptoms despite transgenic plants 
having greater K+ contents than controls [72]. The intense 
sequestration of K+ in NHX1-overexpressing plants reduced 
cytosolic K+ activity, primed the induction of the high-
afϐinity K+ uptake system, and elicited an array of metabolic 
and hormonal disorders related to K+ deprivation [72,118]. 
Notwithstanding these unintended effects resulting from 
NHX overexpression, NHX proteins do increase salt tolerance, 
presumably because retention of cellular K+ is a requisite for 
adaptation to a saline environment [119]. Deletion of NHX1 
and NHX2 genes encoding the two majors vacuolar NHX 
isoforms resulted in the inability to compartmentalize K+ and, 
surprisingly, in sensitivity to K+ supply at concentrations that 

did not compromise the growth of control plants [73,74]. 
Moreover, nhx1 nhx2 mutant lines showed dysfunctional 
stomatal activity, with impaired opening and closure [74,120].

Long-distance transport and inter-organ K+ 
partitioning: Potassium absorbed by peripheral root cells 
and not compartmentalized in vacuoles must be transported 
to the upper parts of the plant through the xylem [121]. This 
step is critical in the long-distance distribution of K+ from 
roots to the upper parts of the plant, and is driven by negative 
pressure (pulling) created by evaporation of water from 
leaves. The osmotic water uptake that is caused by nutrient 
absorption in the root also provides a positive force, known as 
root pressure, from roots to xylem vessels. Under regular K+ 
supply, symplastic K+ diffusion to the xylem through the stele 
may contribute sufϐiciently to K+ transport from root to shoot 
[122]. Moreover, K+ is highly mobile within plants, exhibiting 
cycling between roots and shoots via xylem and phloem [121]. 
Potassium channels SKOR and AKT2 play an important role 
in K+ translocation via xylem and phloem. SKOR (Stelar K+ 
Outward Rectiϐier), being an outward-rectifying channel, is 
expressed in root stele cells (pericycle and xylem parenchyma 
cells) of Arabidopsis, where it mediates K+ secretion by xylem 
parenchyma cells of roots and toward the xylem vessels [123] 
(Figure 2). SKOR opens upon membrane depolarization to 
allow cytosolic K+ efϐlux. In the presence of ample external 
K+, the channel opens at less negative membrane voltages, 
thereby minimizing the risk to serve as an undesirable K+- 
inϐlux pathway [124]. Upon acute depolarization of plasma 
membrane induced by salinity, SKOR in xylem parenchyma 
cells can be rapidly activated to mediate K+ loading into the 
xylem. After the plasma membrane potential is restored by 
increased H+-ATPase activity, SKOR-dependent K+ release 
from root stelar cells to the xylem by membrane depolarization 
is suppressed. Then, accumulated ROS under salinity could, 
in turn, activate SKOR channels to allow xylem K+ loading. 
This may require a highly coordinated mechanism to ensure 
efϐicient xylem K+ loading in salt-stressed plants (Figure 2).

Large quantities of K+ recirculate from roots to shoots via 
the xylem and subsequently return to the roots via the phloem 
[125,126]. The magnitude of the K+ ϐlux recirculated from 
the shoots to the roots would constitute a signal by which 
the growing shoots could communicate to roots for their K+ 
requirement and regulate K+ secretion into the xylem sap 
(and eventually root K+ uptake). AKT2 is mainly expressed 
in the phloem both in leaves and roots [127,128], where the 
AKT2 channel protein plays a dual role by loading K+ in source 
tissues and unloading K+ in sink organs [129]. AKT2 is the only 
weak inward-rectiϐier characterized in Arabidopsis [130,131]. 
The protein phosphatase PP2CA interacts with AKT2 to induce 
both inhibition of the channel current and enhancement of its 
inward rectiϐication [132]. AKT2 can modulate the membrane 
voltage by switching between its modes of an inward or a 
non-rectifying channel, respectively [127,133]. Depending on 
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the cellular context, the phosphorylation status of the AKT2 
channels may change, enabling them to drive either inward or 
outward K+ ϐluxes [134].

Members of the KT/HAK/KUP family, e.g. AtKUP7 and 
OsHAK5, have been proposed to facilitate long-distance K+ 
transport from root to shoot, presumably by mediating K+ 
uptake into the xylem parenchyma cells [122,135] (Figure 2). 
This function of KT/HAK/KUP transporters would be relevant 
under K+ deprivation, when apoplastic K+ levels could be 
below the operational range of channels.

As mentioned earlier, HKT channel-like proteins are 
primarily involved in Na+ ϐluxes both in roots (monocots) and 
vascular bundles (monocots and dicots) [101]. However, they 
often have a signiϐicant impact on maintaining high K+/Na+ 
ratio in aerial parts during salinity stress and genetic diversity 
in HKT proteins meditating long-distance transport of Na+ and 
K+ have a great impact on the salt tolerance of cereals (Figure 2)
[23,49,136].

Co-regulation of k+ and nitrogen uptake

Plants take up numerous mineral nutrients from the soil; 
some of them are essential (as K+ or NO3

−), while others can 
be toxic at high concentrations (as Na+ or NH4

+). Adaptive 
responses to varying mineral nutrient conditions in the soil, 
particularly low-nutrient environments, involve multiple 
signaling pathways whose integration allows plants to grow 
and adjust their development to each speciϐic nutritional 
situation [137]. Thus, changes in the concentration of one 
nutrient trigger a signaling cascade that modify not only the 
amount, localization, and/or activity of this nutrient-speciϐic 
transporter/channel, but also transporters/ channels related 
with other nutrients. N-K interactions are important for root 
architecture [137]. 

K+ is the preferred counter ion for root-to-shoot 
translocation of NO3

− in the xylem of crops and Arabidopsis 
[64,138,139]. NRT1.5, a member of the Nitrate Transporter 
1/Peptide Transporter Family (NPF7.3), is important for the 
NO3

−-dependent K+ translocation in Arabidopsis [140-141]. 
Lack of NRT1.5 resulted in K+ deϐiciency in shoots under low 
NO3

− availability, whereas the root elemental composition was 
unchanged [140,141]. Mutant analyses revealed that both 
NRT1.5 and SKOR contributed additively to K+ translocation; 
SKOR activity was dominant under high NO3

− and low K+ 
supply, and NRT1.5 was required under low NO3

− [142,143]. 
Together, these data indicate that NRT1.5 facilitates K+ release 
out of root parenchyma cells and loading into xylem vessels 
(Figure 2). NRT1.5 is a plasma membrane protein that in 
Xenopus oocytes behaved as a low-afϐinity, pH-dependent 
bidirectional nitrate transporter [140]. Surprisingly, NRT1.5 
has also been shown to release K+ from Xenopus oocytes and 
yeast in a pH-dependent manner, and has been proposed 
to function as a K+/H+ antiporter [143]. Recent knowledge 
gained about the coordinated regulation of K+ and NO3

− 

uptake and nutrition. In fact, K+ starvation is required for 
triggering high-afϐinity HAK5-mediated K+ uptake in roots of 
Arabidopsis and tomato. However, limitation of K+, N, or P, 
induces hyperpolarization of the plasma membrane of root 
cells and enhanced HAK5 transcription [144], a response that 
could be due to maintenance of electrical balance since single 
N and P starvation, probably resulting in lower NO3

− and 
PO4

3− contents, and led to a concomitant reduction of the K+ 
content [137]. Alternatively, the transport of a nutrient could 
become inhibited if another nutrient is limiting [145]. In line 
with this, NO3

−, PO4
3−, and SO4

2− deϐiciencies reduced root K+ 
uptake [139]. Furthermore, comparison of the transcriptional 
responses to single or multiple nutrient deprivations showed 
that N starvation had a dominant effect over P and K starvation. 
In other words, the transcriptional landscape of combined 
K+ and N limitation was mainly driven by the N-starvation 
response.

The CIPK23/CBL1,9 protein kinase complex is key factor in 
the coordination of plant nutrition, regulating iron, NO3

−, and 
K+ uptakes [146-149]. The transport and regulatory protein 
AtNRT1.1 (Nitrate Transporter 1) is involved in both high-
afϐinity and low-afϐinity nitrate uptake. Unphosphorylated 
AtNRT1.1 is a low-afϐinity nitrate transporter working as 
a dimer, and its phosphorylation by CIPK23/CBL1,9 leads 
to dimer dissociation. Phosphorylated AtNRT1.1 monomer 
shows a higher nitrate afϐinity than the dimers [146,150]. On 
the other hand, AtAMT1, an ammonium transporter, works 
as trimers and the phosphorylation by CIPK23/CBL1 (and 
not CBL9) of a single monomer exhibits an allosteric effect, 
leading to the cooperative closure of all three pores in the 
trimer [148]. Together, these data indicate that CIPK23 and 
CBL1 are major regulators of NO3

−, K+, and NH4
+ homeostasis 

in Arabidopsis.

Genetic engineering of specifi c transporters modifi es 
salinity tolerance 

Several obvious ways to achieve salinity tolerance include: 
(1) decreasing sodium conductance and increasing potassium/
sodium selectivity of plasma membrane of root epidermal 
cells; (2) increasing sodium efflux by root epidermal cells; 
(3) increasing sodium accumulation in vacuoles; (4) altering 
sodium and potassium loading and unloading to xylem and 
phloem depending on plant strategy to cope with salinity. 
Successful attempts to overexpress or knockout genes of 
vacuolar proton pump H+-PPase, NHX, HKT, or SOS1-like 
transporters and to modulate the salinity tolerance of plants 
had already been reported. Overexpression of the vacuolar 
H+-PPase would enhance the proton pumping activity at 
vacuolar membrane and thus permit to accumulate more 
Na+ in vacuoles due to activity of Na+(cation)/H+ antiporters 
NHX. The choice of H+-pyrophosphatase is explained by a 
single gene required for the protein, while the other vacuolar 
H+-ATPase is composed of several subunits and needs correct 
overexpression of several genes [80]. Overexpression of 
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vacuolar H+-PPase under control of strong non-speciϐic 
viral 35S promoter sharply increased salinity tolerance 
in Arabidopsis, to 250 mM of NaCl [82]. Further attempts to 
overexpress vacuolar H+-PPases from different plant species 
increased salinity tolerance in tobacco [151-153]. 

Other candidates for overexpression are 
vacuolar NHX genes. Overexpression of AtNHX1 increased 
salinity tolerance in Arabidopsis to 200 mM NaCl. The 
overexpressing plants accumulated more Na+ compared 
to wild type and demonstrated higher Na+/H+ exchange 
activity in isolated leaf vacuoles [25]. The approach of 
overexpressing AtNHX1 to improve salinity tolerance proved 
to be successful for tomato; the transgenic plants accumulated 
more sodium in leaves but not in fruits at 200 mM NaCl 
[29]. Cotton plants with AtNHX1 from Arabidopsis [154], 
rice overexpressing SsNHX1 from halophyte Suaeda 
salsa [155], tomato with heterologous NHX from Pennisetum 
glaucum [156] also showed increased salinity tolerance. 
Overexpression of NHX did not inϐluence the phenotype 
of plants under control conditions [25,29,153-157]. The 
results with heterologous expression or overexpression of 
NHX transporters lead to conclusions that the gene is among 
determinants and potential candidates for engineering salinity 
tolerance (e.g., [155,158] with more references for successful 
overexpression of NHX to increase salinity tolerance in sugar 
beet, wheat, maize and the other plants). The overexpression 
of NHX was not tissue-speciϐic and under the control of strong 
promoters, however, a report could not conϐirm increase in 
salinity tolerance in Arabidopsis overexpressing AtNHX1 [74]. 
Expression in a tissue-speciϐic manner could be the next step 
for using NHX to increase salinity tolerance.

The amazing simplicity of the idea to play with the 
expression of known and functionally well characterized 
transporters and get salt tolerant or salt sensitive plants 
is applied to plasma membrane SOS1 Na+/H+ antiporters 
and Na+ or Na+/K+ HKT transporters. SOS1 is expressed in 
(1) epidermal root cells where it participates in sodium 
efflux and in (2) xylem parenchyma cells where SOS1 
may load Na+ to xylem under moderate salinity and 
unloads Na+ under high salinity or has more complex 
mode of xylem loading/unloading [17,18,56,159-161]. 
Arabidopsis mutants with defects in gene of SOS1 exhibited 
strong growth inhibition under salt treatment [162], which 
was rescued in SOS1 mutant by overexpression of SOS1 gene 
under 35S promoter [56]. Overexpression of SOS1 gene in wild 
type plants under 35S promoter enhanced salinity tolerance 
of Arabidopsis at 100–200 mM NaCl [74,163], reduced 
sodium accumulation in shoots and sodium concentration 
in xylem sap [160]. Further, overexpression of SOS1 from 
A. thaliana increased salinity tolerance in transgenic tobacco 
[75]. SOS1 gene from durum wheat conferred salinity 
tolerance to SOS1 mutant of Arabidopsis [164]. Interestingly, 
the effects of overexpression were observed under salt 

treatment, while in the absence of stress no differences were 
observed in growth or morphology between wild-type plants 
and the transgenic lines. Disruption of SOS1 activity by RNA 
interference in Thellungiella on the opposite resulted in the 
loss of tolerance of the halophyte indicating importance 
of Na+ efflux and essential role of SOS1 in salinity tolerance 
[18]. RNA interference of SOS1 signiϐicantly changed the 
whole transcriptome of Thellungiella [158] and vacuolar 
pH under salt treatment [67]. A more complicated situation 
emerges due to tissue-speciϐic expression. SOS1 is important 
for long-distance ion transport and xylem loading/unloading 
in Arabidopsis ([17] discussed in: de Boer and Volkov, [165], 
sodium partioning between plant organs in tomato [161] and 
ion ϐluxes in root meristem zone [166], therefore attempts to 
express it in speciϐic tissues could increase salinity tolerance 
to a higher extent.

Genetic modiϐication of salinity tolerance using HKT 
transporters was also successful. Analysis of Arabidopsis plants 
with mutated HKT gene revealed higher salt sensitivity of the 
mutants under long term stress, higher sodium accumulation 
in their shoots under mild salinity treatment [167] and 
suggested that HKT is involved in recirculation of sodium 
within plants [48]. Further study conϐirmed increased sodium 
in the shoots of Arabidopsis hkt1;1 mutant and clariϐied 
that HKT is important for root accumulation of Na+ and 
Na+ uptake from xylem in Arabidopsis [46]. The next step was 
to create plants overexpressing HKT [168]. Arabidopsis plants 
overexpressing AtHKT under the control of 35S promoter were 
compared with plants speciϐically overexpressing HKT in 
cells of root stele. Pro35S:HKT1;1 plants were salt sensitive 
probably due to higher Na+ uptake by roots while tissue 
speciϐic overexpression of HKT in stele increased salinity 
tolerance and reduced sodium accumulation in shoots [168]. 
The approach was applied to rice where gene from Arabidopsis 
AtHKT1;1 was heterologously expressed in root cortex. 
It resulted in lower shoot Na+ concentrations, improved 
salinity tolerance and involved up- and down-regulation of 
several membrane transport genes including vacuolar H+-
pyrophosphatases [169]. Overexpression of HKT had none 
[169-171] or slight inhibiting pleiotropic effect on growth 
without NaCl depending on type of promotor for expression 
and on plant line studied [168,169]. HKT transporters proved 
to be important for Na+ exclusion in wheat and were transferred 
from durum wheat to bread wheat by interspeciϐic crossing; 
the genes gave beneϐicial effects including higher K+/Na+ ratio 
in leaves under saline conditions [21]. Remarkably, the recent 
introgression of an ancestral form of the HKT1;5 gene from 
the more Na+-tolerant wheat relative Triticum monococcum 
into susceptible commercial durum wheat (Triticum turgidum 
ssp durum) increased grain yields on saline soil by 25% in the 
ϐield, illustrating the immense potential of this mechanism 
[23]. Some plants including barley accumulate Na+ in shoots; 
overexpression of barley HvHKT2;1 under 35S promoter 
in barley increased salinity tolerance at 100 mM NaCl, but 
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opposite to Arabidopsis increased Na+ concentration in xylem 
and Na+ accumulation in barley leaves [170]. Taken together 
the results set HKT transporters to potential candidates for 
engineering salinity tolerance and among the determinants of 
the trait (reviewed in: [171-173]. 

The application of nitrogen (N) fertilizers has greatly 
increased crop yields. Therefore, enhancing crop nitrogen 
utilization efϐiciency is an important goal [174]. For most 
crops, nitrate is the primary nitrogen source and so enhancing 
nitrate uptake is one strategy for improving nitrogen 
utilization efϐiciency. Multiple nitrate uptake transporters of 
the NRT1 and NRT2 families work together to enable nitrogen 
uptake in plants [175,176]. Therefore, nitrate transporters 
and other proteins that regulate nitrate uptake and sensing 
provide potential tools for engineering crops with tailored N 
uptake activity, N metabolism and improved root growth for 
enhanced nitrogen-use efϐiciency and reduced-N-fertilizer 
requirements [177-179].

Conclusion and futures prospects 
Although plant salt tolerance at the level of Na+ transport 

is well characterized, the initial plant perception of salt stress 
and its transduction to subsequent signaling cascades is still 
obscure. Many genes targets involved in salt tolerance have 
been identiϐied through various approaches, particularly 
through transcriptomics studies. Moreover, it appears that 
forward genetics and yeast complementation strategies 
have so far been the most successful approaches to identify 
relevant targets. The accumulative data show importance of 
two particular classes of transporters: HKTs which function 
in both Na+ uptake and long-distance translocation and 
NHXs in their capacity as H+: Na+ antiport or by maintaining 
K+ homeostasis. The signiϐicance of these systems is often 
isoform dependent and may be further complicated by 
allelic variation between cultivars. Manipulation of several 
of the genes discussed above has been shown to alter uptake, 
efϐlux, translocation and compartmentation of Na+. Although 
in some of these cases improved tolerance can be observed 
in controlled conditions it has not yet resulted in plants 
with signiϐicantly improved tolerance in ϐield conditions. 
Simultaneous upregulation of extruding mechanisms through 
overexpression of systems such as vacuolar pumps, NHXs and 
SOS1 and loss of function in uptake pathways such as non-
selective ion channels and HKTs promises large degrees of 
additive or synergistic beneϐits. This is technically challenging 
but becoming more and more feasible. For instance, salinity 
tolerance that operates by removal of toxic sodium ions from 
the xylem sap could be combined with traits that enhance 
sequestration of sodium into vacuoles, to confer additional salt 
tolerance. More work will be needed to determine whether or 
not traits will be compatible when combined. Moreover, many 
fundamental mechanisms for essential transport processes 
remain to be uncovered and many essential transporters 
undoubtedly remain to be discovered. Therefore, knowledge-

targeted pyramiding of traits will require future advances 
in fundamental research into plant membrane transport 
processes.
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