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Abstract 

Afl atoxins, produced by Aspergillus spp., are strongly toxic and carcinogenic fungal secondary 
metabolites. Afl atoxin biosynthesis is a complex process and involves at least 30 genes clustered 
within an approximately 75 kB gene cluster. In this paper, we reviewed current status of the 
researches on the characterized structural genes involved in afl atoxin biosynthesis and their 
roles in afl atoxin-producing fungi, especially in A. fl avus and A. parasiticus, which will improve our 
understanding of the mechanism of afl atoxin biosynthesis and regulation and provide reference 
for further study.
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Introduction

As early as 1960, animal poisoning incidents happened in England due to a toxin 
produced by Aspergillus lavus, and this toxin is called aϐlatoxins (AFs) later.  Aϐlatoxins 
produced by Aspergillus spp. are secondary metabolites which have strongly toxicity 
and carcinogenicity, and an obviously harmful effect on liver [1].  The agricultural 
contamination caused by aϐlatoxins is a worldwide problem and a potential threat 
to animal and human health [2,3]. A. parasiticus and A. lavus are two major aϐlatoxin 
producers, and their aϐlatoxin biosynthesis pathway genes are highly homologus and 
orders are similar [4]. The aϐlatoxin production involves a series of complex enzymatic 
reactions. Every enzyme is encoded by a corresponding structural gene. Therefore, 
a research on these  structural genes directly reϐlects the mechanism of aϐlatoxin 
biosynthesis. This is an important and necessary process to further study the mechanism 
of synthesis and regulation of aϐlatoxin and its prevention and control. In this paper, 
on the basis of previous reviews and research papers [5-9],  we mainly focus on the 
characterizations and roles of structural genes involved in aϐlatoxin biosynthesis in A. 
lavus and A. parasiticus and  provide reference for more in-depth studies. 

Overview of afl atoxin biosynthesis

Four different types of aϐlatoxins are biosynthesized by Aspergilli. Based on different 
ϐluorescence under ultraviolet light, these aϐlatoxins are divided into two groups: one 
showing blue ϐluorescence is called B-group aϐlatoxins, containing AFB1 and AFB2; 
and the other exhibiting green is called G-group aϐlatoxins, including AFG1 and AFG2 . 
Moreover, the four aϐlatoxins are all different in structure (Figure 1). G-group aϐlatoxin 
(AFG1 and AFG2) differs from B-group (AFB1 and AFB2) by having an extra oxygen atom 
in the A-ring; while, 1-group aϐlatoxin (AFB1 and AFG1) contains a dihydrobisfuran 
ring and 2-group aϐlatoxin (AFB2 and AFG2) contains a tetrahydrobisfuran ring [10]. 
Different Aspergilli produces different kinds of aϐlatoxins. For example, A. lavus mainly 
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produces B-group aϐlatoxins, while A. parasiticus produces both B- and G-group 
aϐlatoxins. It’s important to note that AFB1 is the most toxic mycotoxin among the 
four aϐlatoxins [1]. In addition to aϐlatoxins, these fungi produce other secondary 
metabolites as well, such as cyclopiazonic acid, kojic acid, etc. [11,12].

The aϐlatoxin biosynthesis is complex and involves more than 20 enzyme-catalyzed 
reactions (Figure 2) [5,8,13]. At least 30 aϐlatoxin pathway genes are clustered within 
a 75 kB region of the genome on chromosome III (Figure 3) [6,7]. In the aϐlatoxin 
cluster, a lF is at the proximal end of the cluster and nadA is at the distal end. In the 
5’ end of the cluster sequence, there is no identiϐiable open reading frame (ORF) in 
an approximately 2 kB DNA region and a sugar utilization gene cluster is present in 
the 3’ end [7]. There are two regulator genes involved in aϐlatoxin gene cluster and 
regulating aϐlatoxin biosynthesis [5].

Figure 1: Structures of afl atoxins.

Figure 2: Schematic diagram of afl atoxin biosynthetic pathway.

Figure 3: Schematic presentation of afl atoxin biosynthetic pathway gene cluster..
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S t ructural genes in afl atoxin biosynthesis

Aϐlatoxin biosynthesis involves a set of enzymatic reactions which need a variety of 
enzymes encoded by at least 30 genes. These genes encode tw o fatty acid synthases, a 
polyketide synthase, eleven oxidoreductases, seven cytochrome P450 monooxygenases, 
one cyclase, one esterase, two O-methyltransferases and other enzyme.

F a tty acid synthase (FAS)-encoding genes: a lA and a lB, two fatty acid synthase 
encoding genes, are involved in the production of norsolorinic acid anthrone (NAA) 
from hexanoate produced by acetyl-CoA at the beginning of aϐlatoxin biosynthesis [14-
17]. a lB cloned from A. parasiticus by genetic complementation contains four exons 
and three introns, and encodes a 7.5 kb transcript of FAS β subunit [6,18]. Besides a lB, 
the other FAS gene, a lA, which encodes FAS α subunit and contains three exons and two 
introns, is also found by sequence analysis [6]. The 701 bp of intergenic region between 
a lA and a lB possesses several elements, such as an atypical AϐlR-like binding motif or 
probably two overlapping motifs, three cAMP response element (CRE)-like motifs, two 
stress-response element (STRE) motifs, a SrrA-binding motif, a CCAAT box and multiple 
AP-1 motifs [6,19-21] (Figure 4A). On the aspect of protein structure, both AϐlB and 
AϐlA contain some domains. For example, AϐlB contains acyl transferase (AT) domain, 
enoyl reductase (ER) domain, dehydrase (DH) domain and malonyl-CoA:acyl-carrier 
protein (ACP) transacylase (MAT) domain; while, ACP domain, β-ketoacyl synthase 
(KS) domain, ketoreductase (KR) domain and 4’-phosphopantetheinyltransferase 
(PPT) domain are found in AϐlA [8,22].

Polyketide synthase (PKS)-encoding gene: PKS is involved in synthesis of AFB1 
polyketide backbone [22,23]. a lC encodes polyketide synthase and is cloned from 
A. parasiticus [24-26]. This gene has 6.8 kb of genomic DNA, and contains six exons 
collectively coding for a protein of 2,109 amino acid residues and ϐive introns of 65 bp, 
66 bp, 52 bp, 59 bp and 54 bp. In   the 1,687 bp of intergenic region between a lC and 
a lD, the sequence contains many cis-acting elements [19-21,26-28] (Figure 4B). A lR1 
have no effect on a lC activity because of the position probably. Both A lR2 and A lR3 
are required for expression of a lC, although not showing the binding for lacking a C 
or G at position 8, but having the strongly and moderately competing oligonucleotides 
5’-TCG(C/G)(A/T). BrlA3 and BrlA4 help recruit AϐlR, and BrlA3 is necessary for a lC 
activity. PacC1 appears to have a positive effect on a lC expression at acid pH and a 
negative effect at basic pH. Additionally, two AbaA sites, one AreA site, one NirA site, 
15 CRE-like motifs, two SrrA-binding motifs, three potential TATA boxes and two 
inverted CCAAT boxes exist in the promoter sequence. The polyadenylation site of 
a lC exhibits heterogeneity [26]. Besides the domains recognized by comparing amino 
acid sequence, more domains are found in AϐlC: starter unit: ACP transacylase (SAT) 
domain, KS, MAT, product template (PT), ACP and thioesterase/Claisen cyclase (TE/
CLC) [22,29-31].

Oxidoreductase-encoding genes: Eleven oxidoreductases are involved in aϐlatoxin 
biosynthesis and encoded by corresponding genes. Some genes only participate in one 
reaction, such as hypC, a lH, etc. While, some involve in more reactions, such as a lD, a lE, etc.

hypC Norsolorinic acid (NA or NOR) is the ϐirst stable precursor in aϐlatoxin 
biosynthesis [32]. HypC, an anthrone oxidase, catalyzes the introduction of oxygen into 
activated aryl moieties, which results in the formation of NA (NOR) from NAA [13]. A 
putative gene hypC encoding HypC is discovered in the region between a lC and a lD in 
A. parasiticus [6]. I t  has the length of 542 bp, contains an intron, and ecodes a protein 
of 139 amino acid residues. Because hypC is located between a lC and a lD, some of the 
elements mentioned above which located between a lC and hypC may inϐluence the 
transcription of hypC (Figure 4B). hypC is predicted to encode approximately 17 kDa 
proteins and has a catalytic active site Q-L-X-X-Q-W-S-R-I-F-Y [13].
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a lD NADPH-dependent NA (NOR) ketoreductase (alcohol dehydrogenase) encoded 
by a lD catalyzes the conversion of 1’ keto group of NA (NOR) to 1’ hydroxyl group 
of averantin (AVN) and may be involved in the formation of AFB1 [13,33,34]. a lD 
transcript is 1.25 kb in length, and contains four exons collectively coding for a 29 
kD protein of 294 amino acid residues and three introns of 52 bp, 58 bp and 64 bp 
[35]. Three transcriptional start sites, two of which are major and one is minor, are 
located at upstream from the ATG. The polyadenylation site locates approximately 215 
bp downstream of translation termination codon. The promoter contains the same 
elements mentioned in the intergenic region between a lC and a lD (Figure 4C). Multiple 
transcription factors are required for maximum activity of a lD promoter. A lR1, which 
has no effect on a lC activity, dose not bind with AϐlR in EMSA because the A/T at 
position 5 is replaced by a C, but is necessary, not sufϐicient for maximum transcriptional 
activation; while A lR2 is required for expression of both a lC and a lD [20,27,28,36]. 
NorL appears only in a lD promoter and is necessary for maximum transcriptional 
activation in vivo [36]. Two CREs are identiϐied between a lD and hypC, and only CRE1 
is functional although they have only one nucleotide difference [20,36]. An AP-1-like 
site is located at 12 nucleotides upstream from CRE1, and both of them form composite 
regulatory element [21]. A TATA box is required for maximum transcriptional activation 
in vivo [20,36]. PacC and BrlA sites do not affect a lD transcriptional regulation, and 
may not be required for transcriptional activation [36]. A negative regulator presents in 
the region from position -298 to position -332 by deletion analysis. AϐlD contains some 
conserved sequences, such as Y-G-V-S-K-L-A-A-N-Y-M, G-X-G-X-X-L and Y-L-V-T [35]. 
Additionally, it has high identity and similarity to these of Flavobacterium sp. N-acyl-D-
mannosamine dehydrogenase and Streptomyces violaceoruber PKS. 

a lE and a lF a lE and its homologous gene a lF encode aryl alcohol dehydrogenases 
[37]. AlfE participates in the formation of AVN and oxidization of AFOH which is 
yielded in norA disruptant cultures back to AFB1 [13]. a lE is cloned from A. parasiticus 
using a monoclonal antibody raised against NA (NOR) reductase [38]. An additional 
copy of a lE, a lE2, is identiϐied by Southern blot analysis, and this may explain higher-
level stable aϐlatoxin produced in A. parasiticus than that in A. lavus which has only 
one copy. A single ORF of 1,167 bp encodes a 43.7 kDa protein of 388 amino acids. 
Its promoter region has an AϐlR-binding motif, a TATA box and a CAAT box [27,38]. 
The  p olyadenylation site of a lE transcript is located at nucleotide 1500, and a 

Figure 4: Schematic diagram of cis-acting elements of gene promoter. A, cis-acting elements in the intergenic 
region between afl A and alfB. B and C, cis-acting elements in the intergenic region between afl C and alfD. D, cis-
acting elements in the intergenic region between afl E and alfM. E, cis-acting elements in the intergenic region 
between afl L and alfG.
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polyadenylation signal sequence is located 25 bp upstream. a lE and its gene product 
from A. parasiticus share high degree of identity with its homolog from A. lavus at 
both the nucleotide and amino acid levels [6,38]. However, they show a low identity to 
a lD and AϐlD, respectively [8]. Moreover, there are high homology between a lE and 
an aryl-alcohol dehydrogenase (aad) gene from Phanerochaete chrysosporium or their 
products [38]. The amino acid sequence of AϐlE has an adenine nucleotide binding 
motif G-X-G-X-X-G and one N-glycosylation site N-X-T. 

Besides participation of AVN formation, AϐlF is responsible for the ϐinal oxidation step 
in AFGs formation [33]. AϐlF catalyzes an intermediate given from the rearrangement 
and decarboxylation of the NadA reduced 386 Da intermediate to produce an ester 
which could be de-esteriϐied by esterases, then this product upon dehydration would 
yield AFGs. a lF at 5’ end of the gene cluster is cloned by chromosome walking from 
A. parasiticus [39]. The ORF of a lF consists of 1,146 nucleotides encoding a protein of 
382 amino acid residues and no intron is found. However, a portion of a lF is deleted 
in A. lavus [40]. In the promoter, there is an AϐlR-binding motif [6,39]. a lF dose not 
show signiϐicant homology with a lE at nucleotide level, but their products share 68% 
similarity at amino acid level [7]. 

a lH AϐlH, a typical short-chain alcohol dehydrogenase, is involved in dehydrogenation 
of 5’-hydroxyaverantin (HAVN) to 5’-oxoaverantin (OAVN) [41,42]. AϐlH is a homodimer 
composed of identical 28 kDa subunits and the native molecular mass is estimated 
to be 60 kDa [43]. a lH is cloned by chromosome walking and its transcript has 
approximately 1 kb with no intron [41]. There are two copies of a lH gene, a lH and 
a lH1, in A. parasiticus SU-1, but only one in A. parasiticus SRRC 2043. Eight nucleotide 
substitutions presenting in a lH1 results in ϐive amino acid mutations, in which the 
replacement of G by C in the glycine-rich loop may affect the binding of NAD+-NADP+. 
a lH promoter region contains an AϐlR-binding motif [27]. AϐlH contains two conserved 
functional motifs, a glycine-rich loop motif G-X-X-X-G-X-G and a motif Y-X-X-X-K [41]. 
a lH genes or their products in A. lavus and A. parasiticus share no signiϐicant homology 
at either nucleotide level or amino acid level [5].

alfI AϐlI may catalyze the oxidation of the hydrated intermediate catalyzed by 
a lV-encoded product, in which a lI-encoded product catalyzes alcohol oxidation of 
hydroxyversicolorone (HVN) precursor and the ring closure is catalyzed to form the 
hydroxyfuran [13]. It is reasonable to hypothesize that AϐlI may form a complex with 
AϐlV. a lI is cloned by complementation, and there is only one copy in the A. parasiticus 
genome [4,44]. a lI consists of 858 bp with no intron and encodes a 30.9 kD protein of 285 
amino acid residues. An intergenic region between transcripts of a lO and a lI has only 
34 bp, and no TATA motif or AϐlR-binding site is found [6,44,45]. However, the region at 
positions -55 and -150 to the translation start contains two TATA boxes. The sequences 
of a lI and its product from A. parasiticus share very high identity to these from A. lavus 
and A. sojae either at nucleotide level or at amino acid level. Sequence comparison 
suggests that the key amino acid at 179 may be responsible for the enzymatic activity.

alfW In the convention of HVN to versiconal hemiacetal acetate (VHA), a lW-
encoded HVN monooxygenase catalyzes Baeyer-Villiger reactions [46]. An oxygen atom 
is inserted into a C-C bond adjacent to the carbonyl group of an aliphatic or alicyclic 
ketone on the side chain. a lW contains a coding sequence of 1,446 bp encoding a 55 
kDa protein of 481 amino acid residues and no intron [47]. a lW is adjacent to a lV 
and they share the promoter, so a lW has the same promoter elements as these of 
a lV. Although high homology is showed between AϐlW and monooxygenases in the 
GenBank database, no characteristic motif is found. 

a lX a lX-encoded oxidoreductase catalyzes the reaction of epoxide ring-opening 
step during the process of versicolorin A (VER A or VA) to demethylsterigmatocystin 
(DMST) [48], and may also catalyze an oxidative decarboxylation/dehydration to 
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yield a 326 Da metabolite followed by demethylation to giving AFB1 [1 3 ]. a lX, located 
between a lW and a lY, is cloned from A. parasiticus with no intron and encodes a 
protein of 266 amino acid residues [6,39]. There is a canonical AϐlR-binding motif in its 
promoter [39]. The amino acid sequence of AϐlX shows 27% identity with that of AϐlI 
catalyzed one of the steps in the conversion of averuϐin (AVR or AVF) to HVN [48], and 
AϐlX, like AϐlI, may be a helper protein for AϐlV [5,13]. AϐlX possesses a NADH-ϐlavin 
reductase motif and several conserved sequences, such as A-X-X-G-A-T-G-X-T-G, R-X-
X-X-K-L, L-X-S-A and Y-X-D [39,48]. 

a lM Deoxygenation of a lM-encoded NADH-dependent deoxygenase/ketoreductase 
is responsible for formation of DMST and dihydrodemethylsterigmatocystin (DHDMST), 
in which AϐlM catalyzes the dienone intermediate given by AϐlX [49]. a lM, the ϐirst 
gene found involved in aϐlatoxin biosynthesis, is cloned from A. parasiticus by genetic 
complementation [50,51]. Two copies are found but only one is functional. a lM is 
located between a lE and hypE with an intergenic region of 811 bp from a lE [38]. The 
genomic DNA sequence contains three exons collectively coding for a protein of 262 
amino acid residues and two introns of 50 bp and 61 bp [51]. The transcription initiation 
site is at -82 bp from the translation start codon. In the intergenic region between a lE 
and a lM, there are two AϐlR-binding motifs, ϐive CRE-like sites, a SrrA-binding motif, a 
STRE motif, a TATA box and several AP-1 motifs, but no CAAT box motif is found [19-
21,27,51] (Figure 4D). No binding of recombinant AϐlR with the corresponding motif at 
-182 bp is observed because the A/T at position 5 in the motif is replaced by a C [27]. The 
polyadenylation motif is located 98 bp downstream from the translation termination 
codon and polyadenylation site is located 131 bp [51]. The amino acid sequence of AϐlM 
shows signiϐicant identity with those of some reductases and dehydrogenases [51-54], 
and contains an adenine nucleotide binding motif [51,55,56]. 

alfY a lY-encoded Baeyer-Villiger monoxygenase catalyzes the Baeyer-Villiger oxidation 
of a dienone intermediate formed by epoxidation of the anthraquinone ring of VER A 
(VA) [49]. The genomic DNA sequence of a lY contains three exons collectively coding 
for a protein of 495 amino acid residues and two introns [39]. Its promoter region 
contains a canonical AϐlR-binding motif. AϐlY possesses a highly conserved nicotinate 
phosphoribosyltransferase (NAPRTase) family motif and several highly conserved 
regions, such as G-F-H-(N/D)-H-X-X-H-(H/Q), G-X-(L/V)-H-P-(L/I/V)-I-(H/N/Q)-(L/I)-
X-X-X-X-E, D-F-X-X-X-H, D-D-G-H-X-X-K-X-X-R-A and W-V-R-W-C-G-(E/D)-X-A-W [49]. 

HypB HypB can introduce an oxygen into the keto-tautomer of 11-hydroxy-O-
methylsterigmatocystin (HOMST), followed by rearrangement to the 370 Da intermediate. 
While some researchers suggest that this oxidantion is catalyzed by a lQ encoded protein 
[13,33,57]. hypB is located between a lL and a lI and possesses an intron and encodes a 
17 kDa protein of 163 amino acid residues [6,13]. In the promoter, there are two AϐlR-
binding motifs [58].

Cytochrome P450 monooxygenase-encoding genes: Although these gene-
encoded enzymes participate in redox reaction, they all belong to cytochrome P450 
monooxygenase.

a lG AϐlG catalyzes the hydroxylation of AVN to form HAVN [37]. Yu et al. clones 
a lG, located between hypD and a lL, from A. parasiticus by sequencing [4,59]. a lG 
contains three exons collectively assembling a 1,485 bp of coding region encoding 
a 56.3 kDa protein of 495 amino acid residues and two introns of 46 bp and 67 bp. 
Transcription start point of a lG is presented 32 bp upstream of the ATG by primer 
extension analysis [60]. The 367 bp of intergenic region between a lL and a lG contains 
four AϐlR-like binding motifs, an BrlA binding site, an GC-rich dyad symmetric inverted 
repeat sequence, two functional TATA-like elements and two CAAT boxes [27,59,60] 
(Figure 4E). Besides, negative regulatory elements may be in the region from -196 to 
-118 since expression is enhanced by trunction [60]. While, the region from -367 to 
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-196 is not required for a lG gene activity and SrrA-binding site is not found [19,21,60]. 
The amino acid sequence of AϐlG contains some conserved motifs, such as F-X-X-G-X-X-
X-C-X-G, E-X-X-R and A-G-X-X-T [59].

a lV Disruption of StcB encoding a P450 monooxygenase in the sterigmatocystin 
(ST) gene cluster of A. nidulans leads to the lack of ST and the accumulation of AVR 
(AVF), suggesting that this enzyme is involved in the conversion of AVR (AVF) [61]. 
a lV is homologous to StcB, which is required for the similar reaction in aϐlatoxin 
biosynthesis. a lV contains three exons and two introns of 67 and 55 bp, and a coding 
sequence of 1,473 bp encodes a 56.3 kDa protein of 508 amino acid residues [6,47]. A 
620 bp of intergenic region between a lV and a lW contains a canonical AϐlR-binding 
motif and four possible TATA boxes. AϐlV contains three highly conserved motifs, F-X-
X-G-X-X-X-C-X-G, E-X-X-R and A-X-X-X-T, which are believed to be the active sites

a lL Versicolorin B (VER B or VB) is desaturated to VER A (VA) by a lL encoded 
cytochrome P450 monoxygenase/desaturase, and is also a branch point between 
biosynthesis of 1-group aϐlatoxins and that of 2-group aϐlatoxins [62-64]. Disruption of 
stcL in A. nidulans abolishes the synthesis of ST and results in the accumulation of VER 
B (VB) [65]. a lL in A. lavus and A. parasiticus is the homolous gene to stcL [GenBank: 
AF106958] and is presumed to be involved in this reaction [9]. It is located between 
a lG and hypB, and is transcribed in a direction same as them. The genomic DNA 
sequence of a lL contains two exons and an intron [6]. Its promoter region possesses 
an AϐlR-binding site but SrrA-binding site is not found [19,21]. 

a lN stcS is found to be involved in the conversion of VER A (VA) to DMST and its 
homolog in A. parasiticus is a lN, presuming that a lN is involved in the same conversion 
in aϐlatoxin biosynthesis [7,66]. AϐlN catalyzes epoxidation of the B ring of VER A (VA) 
[49]. a lN is cloned from A. parasiticus by genomic DNA sequencing [39]. The genomic 
DNA sequence of a lN contains two exons and an intron, whose ORF encodes a protein 
of 492 amino acid residues. In the promoter, a canonical AϐlR-binding motif and three 
SrrA-binding motifs exist [21,39].

a lQ AϐlQ catalyzes the epoxidation of the A-ring of O-methylsterigmatocystin 
(OMST) or dihydro-O-methylsterigmatocystin (DHOMST), then NIH shift to HOMST 
or dihydro-11-hydroxy-O-methylsterigmatocystin (DHHOMST) [33]. HypD may assist 
AϐlQ in oxidation of OMST [13,67-69]. a lQ belongs to a new P-450 gene family named 
CYP64, and they show more than 90% identity either at nucleotide level or at amino 
acid level in A. lavus and A. parasiticus [70,71]. Both of them contain seven exons and 
six introns, although the number of nucleotides in the last two introns are different 
[71,72]. a lQ codes for a 60.2 kDa protein of 528 amino acid residues. In the promoter 
region, there are an AϐlR-like binding site, a TATA box and some elements located in 
the intergenic region between a lQ and a lP [72]. By site-directed mutagenesis and 
sequence analysis, H at position 400 is critical for the enzyme activity and A at 143 
plays a signiϐicant role [71]. The difference in key amino acid residues may inϐluence 
the ability of aϐlatoxin production between A. parasiticus and A. lavus. AϐlQ contains 
three highly conserved regions, heme-binding motif F-X-X-G-X-X-X-C-X-G, hydrogen 
bond region E-X-X-R and a highly hydrophobic region [71,72]. 

a lU AϐlU can catalyze the 370 Da intermediate to give a 386 Da AFG1 precursor [33]. 
a lU contains ϐive exons collectively coding for a protein of 498 amino acid residues 
and four introns of 63 bp, 50 bp, 70 bp and 76 bp [7,39]. Its promoter possesses a 
canonical AϐlR-binding motif. Like a lF, a deletion of portion of a lU is present in 
A. lavus, which may lead to fail to the transcription and loss the ability to produce 
G-group aϐlatoxin [40]. AϐlU possesses some conserved regions of P450 enzymes, such 
as a heme-binding motif, an E-X-X-R motif and a protein transfer groove A/G-G-X-D/E-
T-T/S, and a membrane-binding motif P-X-P [39,40]. 
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NadA NadA-encoded product may catalyze the last conversion from NADA and 
probably the hypothesized DHNADA (dihydroderivative of NADA) to AFG1 and AFG2 
through demethylation in the aϐlatoxin biosynthesis, in which the NADA produced from 
AϐlU catalyzed intermediate has a molecular mass of 360, and is converted to produce 
AFG1 [73]. Ehrlich et al. [33] shows that NadA is unlikely to catalyze the oxidation of 
the 360 Da intermediate to AFG1, but NadA catalyzes the 386 Da intermediate given 
from AϐlU oxidation to produce a 362 Da intermediate, then converted to 360 Da AFG1 
precursor probably corresponding to NADA by NorB. nadA is cloned by gene proϐiling 
study using microarray, which is ϐirstly believed to be a sular utilization gene encoding 
a NADH oxidase [74]. It is the end of the aϐlatoxin pathway gene cluster at 3’ end. The 
intron assignment for nadA gene and their protein size are different considerably in 
different strains. For example, this gene from A. parasiticus has two exons collectively 
encoding a protein of 444 amino acid residues with 48.5 kD and one intron of 61 bp 
[33,74]. However, the one from S-strain A. lavus AF70 (GenBank accession number 
AY510453) contains three exons, encoding a protein of 407 amino acid residues, and 
two introns; while other from L-strain A. lavus AF13 (GenBank accession number 
AY510451) contains six exons, encoding a protein of 355 amino acid residues, and 
ϐive introns [33]. In the promoter, there is an AϐlR-binding site [58]. The NadA from 
A. parasiticus possesses a conserved old yellow enzyme (OYE)-related FMN binding 
domain reductases family domain, and some critical amino acids, such as H at 195, 
N at 200, and Y at 197. [33,75,76]. In addition to the gene structure and protein size, 
amino acid composition of NadA is difference, although these diversities are not in the 
other aϐlatoxin biosynthesis genes [33,74]. Some amino acids are missing or replaced 
[33,75]. These sequence differences will result in the inactivation of NadA [33,73,74].

 Cyclase-encoding gene: a lK-en c o ded OAVN cycl ase is involved in the formation 
of AVR (AVF) from OAVN, and is also named versiconal (VHOH or VAL) cyclase or 
versicolorin B synthase which catalyzes the conversion of VHOH (VAL) to VER B 
(VB) [43,77,78]. a lK gene product catalyzes intramolecular acetal formation among 
the given 5’-ketone and two hydroxyl groups (3-OH and 1’-OH) from HAVN [43], and 
also catalyzes the dehydrative cyclization of racemic VHOH (VAL) to optically active 
VER B (VB) [62,78,79]. This gene is located between a lQ and a lV, and transcribes 
in a direction same to a lQ with an intergenic region of 511 bp and opposite to a lV. 
Its 1,985 bp of genomic DNA sequence contains two exons assembling a continuous 
ORF of 1,932 bp and one intron of 53 bp, and the coding sequence encodes a protein 
of 643 amino acid residues with a molecular mass of 70,271 Da and an isoelectric 
point of 5.06 [80]. The molecular mass and isoelectric point estimated by calculation 
differ from those observed in experiments. The monomeric molecular mass of native 
AϐlK which is a dimer is approximately 78 kDa and the isoelectric point is 4.7 ± 0.1 
[78,80]. These differences can be attributed to the post-translational modiϐication. 
The promoter region contains an AϐlR-binding site, a pyrimidine-rich motif, a TATA 
box and a CAAT box [20,27,80]. Besides, this region lacks CRE-like motif and dose not 
bind AftB as well [19-21]. A polyadenylation site at 161 bp after the termination codon 
does not correspond to the canonical one [80]. In comparison of amino acid sequences, 
AϐlK shows high homology to many ϐlavin-dependent oxidases and dehydrogenases. 
Its amino acid sequence contains three N-linked glycosylation sites N-X-S/T, a G-X-G-
X-X-G motif and a calmodulin binding domain (CaMBD) [80-82].

Esterase-encoding gene: A esterase encoded by a lJ involved in the conversion of 
VHA to VHOH (VAL) has been puriϐied from A. parasiticus [83,84]. An additional copy of 
a lJ, estA2, whose gene product has 9 amino acid substitutions, is outside the aϐlatoxin 
pathway gene cluster but is not expressed for position effect likely [85]. The 1,000 bp 
of a lJ genomic DNA contains two exons collectively assembling a coding sequence of 
945 bp encoding a 34 kDa protein of 314 amino acid residues and one intron of 55 bp. 
AϐlJ is an about 60 kDa of isomeric dimer protein consisting of two 32 kDa of monomer 
[83,84]. The promoter of a lJ contains consecutive two canonical AϐlR-binding motifs, 
a SrrA-binding motif, ϐive TATA boxes and one CAAT box [21,85]. 
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O-methlytransferase-encoding genes: There are two O-methlytransferases involved 
in aϐlatoxin biosynthesis [86]. The primary structures of the two O-methlytransferase 
genes and their products exhibit many difference, so that their biological functions 
are different [45,86]. O-methyltransferase I encoded by a lO catalyzes methylation of 
6-hydroxyl group of DMST or DHDMST in order to produce ST or dihydrosterigmatocystin 
(DHST), then O-methyltransferase II, the other O-methyltransferase encoded by a lP, 
further methylates 7-OH of ST or DHST to form OMST or DHOMST [86].

a lO The cDNA sequence of a lO has the length of 1,373 bp with three introns of 
63 bp, 50 bp and 62 bp, and encodes a 43 kDa protein of 386 amino acid residues 
[6,45,87]. The transcription start site is at -140 bp upstream before translation start 
codon. The promoter region possesses an AϐlR-binding site and three TATA boxes, but 
no SrrA-binding site is found [19,21,45]. The polyadenylation signal sequence is at 26 
bp downstream of the translation termination codon and the polyadenylation site is at 
44 bp. AϐlO contains an SAM binding consensus sequence and a CaMBD [45,82].

a lP The genomic DNA sequence of a lP contains a 1,484 bp of ORF composed of 
ϐive exons collectively coding for a 46 kD protein of 418 amino acid residues and four 
introns of 6 bp, 59 bp, 52 bp and 59 bp [88,89]. In the promoter region, there are two 
AϐlR-binding sites, nine CRE-like motifs, a STRE motif, two or three TATA boxes and 
four CAAT boxes but no SrrA-binding site [19-21,27,88]. The nucleotide sequences of 
a lP from A. parasiticus and A. lavus share more than 97% identity and same as at 
amino acid level [88]. The native AϐlP has a leader peptide of 41 amino acid residues, 
and the mature one consists of 377 amino acid residues which has a molecular weight 
of 42 kD [89]. AϐlP possesses a SAM-binding site V-L-(E/D)-X-G-X-G-X-G, a CaMBD and 
a sequence Y-L-V-T near the N terminus [35,82,88,89].

Other enzyme-encoding gene: hypE encod e s a product which can catalyze the 
328 Da intermediate from the 326 Da intermediate with an unknown cytochrome 
P450 enzyme to lose the methyl res i due for the production of AFB1 [13]. HypE has a 
catalytic ethD domain required for ethyl-t-butyl ether hydrolysis [90].

Prospects

Researches of aϐlatoxins, the highly toxic and carcinogenic fungal secondary 
metabolites produced by A. lavus and A. parasiticus, have been extensively carried 
out more than 50 years since 1960s. Complete nucleotide sequences of aϐlatoxin 
biosynthesis clusters contained in several aϐlatoxin-producing varieties including 
A. lavus and A. parasiticus are already been known [6]. Genes involved in aϐlatoxin 
biosynthesis, including structural and regulatory genes, have been reported [5]. With 
the identiϐication of functions of the genes in the cluster, the mechanism of aϐlatoxin 
biosynthesis seems to have been unveiled. 

Actually, in addition to structural genes in the cluster, aϐlatoxin biosynthesis is regulated 
by other factors, such as regulatory genes, modiϐication, environmental elements, etc. 
DNA methylation, an epigenetic modiϐication, plays a vital role in the regulation of gene 
expression in eukaryotes. DNA methyltransferase inhibitor 5-azacytidine (5-AC) can 
induce a ϐluffy phenotype and inhibit aϐlatoxin biosynthesis in A. lavus [91]. Unexpectedly, 
our results reveal that the DNA methylation level of A. lavus is negligible [92]. In such 
situations, we believe that DNA methylation does not act to regulate the expressions of 
the genes involved in aϐlatoxin pathways and is not a target of 5-AC. Moreover, we ϐind 
that DmtA, a DNA methyltransferase homologue, is important in regulation of aϐlatoxin 
biosynthesis and for A. lavus to adapt to stressful environments and for survival [93]. This 
increase the complexity in the regulation of aϐlatoxin biosynthesis. The canonical regulatory 
genes within the AF gene cluster, aϐlR and aϐlS, have been extensively investigated [94]. 
Beyond them, some other regulatory factors, such as LaeA, Ham, NosA, FarB, CreA, etc., can 
also inϐluence aϐlatoxin formation in A. lavus [91,95,96].
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In this review, we pay more attention to structural genes. Some details in the whole 
process of aϐlatoxin biosynthesis are not very clear, especially in the last steps which 
may need additional enzyme(s) but has not been identiϐied yet. In order to do that, 
many more studies have been made in biochemical and molecular mechanisms of 
aϐlatoxin biosynthesis. In the process of structural gene cloning, multiple methods are 
carried out, such as genetic complementation (a lB, a lD, a lI, etc.), reverse genetics 
(a lE, a lP, etc.), chromosome walking (a lF, a lH, a lQ, etc.), sequence analysis (hypC, 
a lV, a lN, etc.), etc., in which genetic complementation is considered to be an effective 
strategy [97]. The functions of the most of these genes have been conϐirmed by gene 
knockout, gene complementation studies, or enzymatic studies [7]. Every structural 
gene can catalyze a speciϐic reaction or multiple reactions in aϐlatoxins formation. 
Regulatory genes, such as a lR, and other biotic and abiotic elements, such as carbon 
source, nitrogen source and bacteria, also affect aϐlatoxin biosynthesis [5,98]. With 
the report of genome sequence of A. lavus [99], more information will be obtained 
to research whether it exists other structural gene(s) and regulatory gene(s) needed 
in the aϐlatoxin biosynthesis in or beyond the aϐlatoxin biosynthetic gene cluster. 
Therefore, identiϐication of all the structural and regulatory genes involved in the 
aϐlatoxin biosynthesis becomes imperative. Using some new strategies including the 
Next Generation Sequencing technology will gain more knowledge about genetic 
regulation, signal transduction and interaction with the environment [91]. With more 
information being summarized, we will have a better understanding of mechanisms of 
aϐlatoxin biosynthesis and regulation and its prevention and control.
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