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Plant hormones are versatile chemical regulators of plant growth. The concept 
of hormone ‘interaction’ [1] has gained much importance and several key players of 
hormonal network are uncovered for major plant hormones. The fact that hormones are 
structurally unrelated and their interaction elicits different genomic and non-genomic 
responses suggest hormone interaction involve co-regulation at multiple levels [2]. 
Recent studies suggest that hormonal interaction involves control over biosynthesis 
genes [3-6], key components of signalling pathways [7,8], hormone distribution [9,10], 
and interaction at the level of gene expression [11-13]. The spatial and temporal 
changes in hormone sensitivity add further complexity as they are developmental stage-
dependent [14]. Understanding how these mechanisms are integrated would allow us 
to manipulate hormone interaction-regulated growth response under environmental 
changes. One such prominent emerging hormone interaction is ethylene and abscisic 
acid (ABA) in several growth processes. In this short review, I discuss some of the 
common transcriptional regulators of ethylene and ABA.

ABA and ethylene interaction regulates a multitude of plant developmental processes 
(Table 1). Many developmental processes have been observed to be antagonistically 

Table 1: Functional roles of ethylene and ABA in several developmental processes.
Trait Ethylene ABA References

Seed dormancy C2H4 inhibits ABA-induced 
promotion of seed dormancy ABA promotes seed dormancy Arc et al. (2013)

Seed germination C2H4 promotes seed 
germination

ABA delays/inhibits seed 
germination by enhancing seed 

dormancy

Linkies et al. (2009); Zhu 
et al. (2009)

Seedling development
C2H4 affects glucose signalling 
and promotes post-germination 

seedling development

ABA inhibits the promoted role of 
C2H4 of seedling development Leon & Sheen (2003)

Submergence-induced 
root epidermal cell 

death

C2H4 induces programmed cell 
death of root epidermal cells

ABA inhibits the promoted role of 
C2H4 of cell death Steffens & Sauter (2005)

Glucose-induced 
repression of RBCS

C2H4 inhibits ABA promotion of 
sugar-induced repression of RBCS 

and increases Rubisco levels

ABA promotes sugar-induced 
repression of RBCS and 

decreases Rubisco levels

Tholen et al. (2007); 
Acevedo-Hernandez et 

al. (2005)
Stress-induced 

stomatal closure
C2H4 inhibits/limits ABA 

promotion of stomata close
ABA promotes stress-induced 

stomata close
Chen et al. (2013); She & 

Song (2012)

Petiole angle C2H4 positively regulates petiole 
angle

ABA negatively regulates petiole 
angle in both C2H4-independent and 

dependent ways

Polko et al. (2013); 
Benschop et al. (2007)

Root quiescence center 
(QC) cell division and 

differentiation
C2H4 promotes QC cell division ABA suppresses QC stem cell 

differentiation

Zhang et al. (2010); 
Ortega-Martinez et al. 

(2007)

Auxin transport in the 
root

C2H4 induces both acropetal 
and basipetal auxin transport 
by activating PIN3, 7 and PIN1 

& AUX1 expression, respectively

ABA induces basipetal mode 
of auxin transport by activating 

AUX1 & PIN2 expression

Xu et al. (2013); Lewis et 
al. (2011)

Lateral root (LR) 
emergence C2H4 promotes LR emergence ABA inhibits LR emergence Jung & McCouch (2013)
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regulated by ABA and ethylene. Plants must therefore need to integrate information 
provided through ABA- and ethylene-signalling pathways that are largely achieved through 
transcription factors (TFs), which repress or activate suits of genes to modulate growth 
responses [15]. Several components identiϐied in ABA and ethylene pathways may 
act as nodes to connect multiple pathways/signals of endogenous developmental 
and exogenous environmental signals. Recently, these molecular nodes appear to be 
commonly, often oppositely, regulated by several TFs [4,16-19]. Although a plethora 
of TFs are identiϐied as targets of ABA and ethylene signalling [4,20-23], here, HD-
Zip (homeodomain-leucine zipper), bZIP (basic leucine zipper) and AP2/ERFs 
(APETALA2/Ethylene Response Factor) that are recently shown to interfere with both 
ABA and ethylene signalling are discussed. These proteins play roles in regulating plant 
adaptation under changing environmental conditions [23-25] by binding to speciϐic 
DNA sequences and HD-Zip’s have the ability to form a large number of interacting 
complexes affecting hormone-related and developmental functions in vivo [25]. 

A class 1 HD-Zip TF of tomato, LeHB1, which plays an important role in ϐloral 
organogenesis and ripening, can transcriptionally activate the expression of tomato 
LeACO1, a biosynthetic gene of ethylene [24]. LeHB1 binds to LeACO1 promoter 
sequence with dyad symmetry. Down-regulating LeHB1 via virus-induced gene 
silencing signiϐicantly reduced LeACO1 expression, suggesting LeHB1 transcriptionally 
activate LeACO1 and thus promote ethylene responses [24]. Any ABA interference 
in LeHB1 overexpressing lines is unknown, however, a Medicago truncatula HD-Zip, 
MtHB1, acts as a positive regulator of ABA signalling in lateral root emergence [26]. 
When MtHB1 was overexpressed in the roots, it suppressed LOB-binding domain 1 
(LBD1) resulting in longer primary root while reduced lateral root (LR) emergence, 
which involved MtHB1 repression of auxin-induced ABI3, a ABA-responsive TF, that is 
important for LR primordia [27] suggesting ABA sensitivity can override auxin response 
mediated by MtHB1. Interestingly, when ectopically overexpressed, AtHB1 overrides 
the etiolation response of dark-grown Arabidopsis seedlings [28]. Considering the fact 
that AtHB1 shares 69% and its HD-Zip domains share 92% similarity to LeHB1 [24] 
and the triple response is typical to ethylene [29], it is possible that HB1 can act as 
a positive regulator of ABA response and a negative regulator of ethylene signalling. 
However, this needs to be experimentally tested.

Ethylene Response Factors of tomato and tobacco, LeERF2 and TERF2, respectively, 
have shown to involve in the feedback loop of ethylene synthesis [30]. ERF2 belongs 
to the family of AP2/ERF TFs carrying a single AP2 domain in which acidic N-terminal 
and/or C-terminal regions act as activation domains [21]. Both LeERF2 andTERF2 
activate ethylene biosynthesis genes, ACO and ACS, by binding to GCC box and DRE/
CRT cis-elements and participates in ethylene production. Interestingly, plants 
overexpressing LeERF2/TERF2 germinated twice as high as that of wild types in the 
presence of ABA [30]. Similarly, ABA failed to decrease ERF1 expression in an ethylene 
hypersensitive mutant ctr1 [31]. These studies suggested that ERF1 and ERF2 act as 
negative regulators of ABA response. However, such negative response was decreased 
under high ABA levels and salt-induced ERF1 expression was indeed signiϐicantly 
lower in ABA-hypersensitive abi1 and abi2 knockout mutants [31], suggesting the 
dominance of ethylene response over ABA sensitivity might be dependent on ABA 
levels. Low concentrations of endogenous ABA levels may not necessarily affect ERFs 
expression, however, under stress conditions, which induces higher ABA levels, ABA 
or its dominant mutational components might modify ERFs expression and antagonize 
ethylene responses [31]. Supporting evidence also comes from a dominant negative 
allele ABI1, which transcriptionally interact and activate a HD-Zip TF of Arabidopsis 
AtHB6 that act as a negative regulator of ABA inhibition of stomata closure under 
drought stress [32,33], a reminiscent of ABA-insensitive mutants abi1 and abi2 [34]. 

These studies highlight the cross-talk between ABA and ethylene responses need 
further studies using a common experimental platform, where TF promoters carry 



Common transcriptional regulation of ABA and ethylene

Published: January 03, 2018 003

motifs necessary for binding of genes of both ABA and ethylene pathway. A Helianthus 
annuus HD-Zip, HaHB4, represent such an excellent resource, which carry two 
redundant root-speciϐic ABA response elements (ABREs, one ABRE is ABA-responsive 
and the other is NaCl-responsive) and one W-box cis-acting element [16], and is strongly 
induced by water deϐicit and ABA [35]. Plants overexpressing HaHB4 was shown to 
act as a negative regulator of ethylene signalling, while its role in ABA signalling was 
not reported. Nevertheless, these plants might serve as an excellent resource to study 
how TFs might regulate both ABA and ethylene signalling in a common experimental 
platform. 

The differential regulation of ABA and ethylene responses is further shown by 
bZIP TFs. A bZIP factor, HY5 (Long Hypocotyl5) was recently reported to act as a 
molecular link between ABA and ethylene signalling [4,36]. HY5 was shown to form 
a part of crucial transcriptional cascade in ABA-modulated ethylene responses. 
ABA-induced HY5 binds to the G-box of AtERF11 to activate its transcription, which 
in turn binds to the DRE of, and repress, ACS2 and ACS5 genes, thus attenuating the 
ethylene biosynthesis [4], suggesting HY5 act as a positive regulator of ABA response 
and a negative regulator of ethylene response. However, the mechanism how ABA-
induced HY5 activates ERF11 is unknown; presumably it may occur through the 
histone modiϐications to ERF11 [37]. Alternatively, given the fact that the ethylene 
biosynthesis gene (e.g. ACS8) contains cis-element for HY5 binding [38], it is equally 
possible HY5 could also directly transcriptionally regulate ACS gene expression. Taken 
together, numerous transcriptional factors appear to be acting as common regulators, 
but oppositely operating, potentially interfering with both ABA and ethylene signalling 
pathways.

In addition to TFs, amphipathic helix proteins, SNL1 and SNL2, were recently shown 
to form another cross-link point of ABA and ethylene signalling [37]. They belong to 
SWI-INDEPENDENT3 (SIN3)-LIKE protein family, which play roles in recruiting histone 
binding proteins resulting in a transcriptionally repressed state of the chromatin [39]. 
During Arabidopsis seed dormancy establishment, SNL1 and SNL2, through histone 
deacetylation, negatively regulates the ethylene pathway while positively regulates the 
ABA pathway, leading to an increase in seed dormancy. These two proteins regulate 
key components of ethylene (ACO1, ACO4, ERF9 and ERF112) and ABA (CYP707A1 & A2, 
and NCED4) pathway by modifying their histone acetylation levels, thus promoting the 
seed dormancy [40]. Interestingly, only NCED4 gene expression was down regulated in 
the double mutant snl1 snl2 (low ABA levels) raising the question whether increased 
ABA levels would induce SNLs proteins that in turn could repress ethylene signalling 
is unknown, which deserves further studies. 
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