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Introduction
As is known, phytohormones auxins and cytokinins are 

key regulators of plant growth and development, which are 
synthesized in the apical meristems of shoots and roots, young 
leaves, seeds, and fruits [1-4]. They exhibit a stimulating effect 
on seed germination, the formation and growth of shoots, 
and adventitious and lateral roots of plants in the vegetative 
stage [1-4]. Considerable attention of plant biologists is 
devoted to the screening of new effective analogues of 
auxins and cytokinins of synthetic origin for their use in 
agriculture to improve growth and increase the productivity 
of agricultural crops. In recent years, new synthetic analogues 
of auxins and cytokinins have been created, such as NAA 
(1-naphthylacetic acid), 2,4-D (2,4-dichlorophenoxyacetic 
acid), 3,4-D (3,4-dichlorophenoxyacetic acid), 2,4,5-T 

(2,4,5-trichlorophenoxyacetic acid), 4-CPA (4-chloro-pheno
xyacetic acid), dicamba (3,6-dichloro-2-methoxybenzoic 
acid), picloram (4-amino-3,5,6-trichloropyridine-2-carboxylic
acid), kinetin (6-furfurylaminopurine), 2iP (N6-(2-isopentenyl)
adenine), BA (N6-benzyladenine), BAP (6-benzylaminopurine), 
BPA (N-benzyl-9-(2-tetrahydropyranyl)-adenine), tetrahydro
pyranyl-benzyladenine (PBA), TDS (thidiazuron), that have 
a physiological effect similar to natural phytohormones 
such as IAA (indole-3-acetic acid), 4-Cl-IAA (4-chloro-IAA), 
PAA (phenylacetic acid), IBA (indole-3-butyric acid), IPA 
(indole-3-pyruvic acid), 2-(2,4-dichloro-phenoxy) propionic 
acid (2,4-DP), indole-3-lactic acid (ILA), zeatin (N6-(4-
Hydroxy-3-methyl-2-buten-1-yl)adenine) on the growth and 
development of plants during ontogenesis, due to which they 
are used in agriculture as plant growth regulators [3-13].
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seedlings, they were placed in a climate chamber, where they 
were grown for 2 weeks at 16/8 h light/dark conditions, at 
the temperature of 20 °C - 22 °C, light intensity of 3000 lux, 
and air humidity of 60% - 80%. Comparative analysis of 
morphometric parameters of wheat plants (average length of 
shoots and roots (mm), average biomass of 10 plants (g)) was 
carried out at the end of the two-week period according to the 
method [40]. 

Determination of the content of photosynthetic 
pigments 

To perform the extraction of photosynthetic pigments, 
we homogenized a sample (500 mg) of wheat leaves in 
the porcelain mortar cooled at the temperature of 10 °С 
96% ethanol at the ratio of 1: 10 (weight: volume) with the 
addition of 0,1 - 0,2 g CaCO3 (to neutralize the plant acids). 
The 1 ml of obtained homogenate was centrifuged at 8000 
g in a refrigerated centrifuge K24D (MLW, Engelsdorf, 
Germany) for 5 min at the temperature of 4 °С. The obtained 
precipitate was washed three times, with 1 ml 96% ethanol, 
and centrifuged at the above-mentioned conditions. After this 
procedure, the optical density of chlorophyll a, chlorophyll b, 
and carotenoid in the obtained extract was measured using a 
spectrophotometer Specord M-40 (Carl Zeiss, Germany).

The content of chlorophyll a, chlorophyll b, and carotenoids 
in wheat leaves was calculated in accordance with formula 
[41,42]:

Cchl a = 13.36 × A664.2 – 5.19 × A648.6,

Cchl b = 27.43 × A648.6 – 8.12A × 664.2,

Cchl (a + b) = 5.24 × A664.2 + 22.24 × A648.6,

Ccar = (1000 × A470 – 2.13 × Cchl a – 97.64 × Cchlb)/209,

Where, 

Cchl – concentration of chlorophylls (μg/ml), Cchl a – 
concentration of chlorophyll a (μg/ml), Cchl b – concentration 
of chlorophyll b (μg/ml), Ccar – concentration of carotenoids 
(μg/ml), А – absorbance value at a proper wavelength in nm.

The chlorophyll and carotenoids content per 1 g of Fresh 
Weight (FW) extracted from wheat leaves was calculated 
by the following formula (separately for chlorophyll a, 
chlorophyll b, and carotenoids):

A1 = (C × V)/(1000 × a1),

Where, A1 – content of chlorophyll a, chlorophyll b, or 
carotenoids (mg/g FW), 

C - Concentration of pigments (μg/ml), 

V - Volume of extract (ml), 

a1 - Sample of wheat leaves (g).

Our previously conducted studies show that the synthetic 
plant growth regulators Methyur (sodium salt of 6-methyl-
2-mercapto-4-hydroxypyrimidine), Kamethur (potassium 
salt of 6-methyl-2-mercapto-4-hydroxypyrimidine), and new 
synthetic pyrimidine derivatives when used in concentrations 
from 10-5M to 10-8M, demonstrate auxin-like and cytokinin-
like effects on growth and development, as well as on the 
productivity of major grain, leguminous, vegetable, industrial 
and horticultural crops [14-22].

Currently, new synthetic compounds belonging to 
thienopyrimidine derivatives are used in medicine as 
therapeutic agents, showing antibacterial, antifungal, antiviral, 
anticancer, antioxidant, anti-in lammatory, antitubercular, 
antidiabetic, antihypertensive, cardiotonic, anticonvulsant, 
antimalarial, antihelminthic and analgesic activities through 
inhibition of various enzymes and pathways [23-30]. Besides 
this, a very promising approach is the screening of new 
synthetic compounds among thienopyrimidine derivatives 
that can be practically used in agriculture as plant growth 
regulators, herbicides, pesticides, and insecticides by 
inhibiting various enzymes of weeds and insects [31-39]. 

Our present work is aimed at the screening of new synthetic 
compounds among thienopyrimidine derivatives, which show 
the ability to demonstrate auxin-like and cytokinin-like effects 
on the growth and photosynthesis of an important agricultural 
crop - wheat (Triticum aestivum L.) variety Svitlana.

Materials and methods
Synthetic plant growth regulators Methyur (sodium salt 

of 6-methyl-2-mercapto-4-hydroxypyrimidine), Kamethur 
(potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine 
and new synthetic thienopyrimidine derivatives (compounds 
№ 1 – 11) were synthesized at the Department for Chemistry of 
Bioactive Nitrogen-Containing Heterocyclic Compounds, V.P. 
Kukhar Institute of Bioorganic Chemistry and Petrochemistry 
of the National Academy of Sciences of Ukraine. Auxin IAA 
(1H-indol-3-yl)acetic acid was manufactured by Sigma-
Aldrich, USA (Table 1).

Plant growth conditions 

The seeds of wheat (Triticum aestivum L.) variety Svitlana 
were sterilized with 1% KMnO4 solution for 15 min, then 
treated with 96% ethanol solution for 1 min, after which they 
were washed three times with sterile distilled water. After this 
procedure, wheat seeds were placed in the plastic cuvettes 
(each containing 20 seeds - 25 seeds) on the perlite moistened 
with distilled water (control sample) or water solutions of 
auxin IAA, or synthetic plant growth regulators Methyur and 
Kamethur, or synthetic thienopyrimidine derivatives used 
in the most physiologically active concentration of 10-6M 
(experimental samples). Then the wheat seeds were placed 
in a thermostat for germination in the dark at a temperature 
of 20 °C - 22 °C for 48 hours. After the appearance of wheat 
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Table 1: Chemical structure, name, and relative molecular weight of auxin IAA, synthetic plant growth regulators Methyur (sodium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine), 
Kamethur (potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine), and new synthetic thienopyrimidine derivatives (compounds № 1 – 11).

Chemical compound Chemical structure Chemical name and relative molecular weight (g/mol)

IAA

N
H

O

OH
(1H-indol-3-yl)acetic acid

MW=175.19

Methyur Sodium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine 

MW=165.17

Kamethur Potassium salt of 6-methyl-2-mercapto-4-hydroxypyrimidine

MW=181.28

 1 5-Benzenesulfonyl-3-ethyl-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one 
MW=296.3690

 2 3-Allyl-5-benzenesulfonyl-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one
MW=308.3802

 3 5-Benzyl-6-methyl-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one 
MW=232.3062

 4 5-Benzenesulfonyl-3-phenyl-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one 
MW=344.4136

 5

 

4-Oxo-2-thioxo-6-p-tolyl-1,2,3,4-tetrahydro-pyrimidine-5-carbonitrile 
MW=243.2890
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 6 4-Oxo-6-phenyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carbonitrile 
MW=229.2619

 7 2-Methylsulfanyl-6-oxo-4-p-tolyl-1,6-dihydro-pyrimidine-5-carbonitrile 
MW=257.3161

 8

 

6-Methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl 
ester 

MW=276

 9 4-(4-Methoxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-
carboxylic acid ethyl ester 

MW=306

 10 4-(4-Methoxycarbonyl-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-
5-carboxylic acid ethyl ester 

MW=334

 11
4-(4-Hydroxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-

carboxylic acid ethyl ester 
MW=292

Results and discussion
The regulatory effect of new synthetic thienopyrimidine 

derivatives compared to the regulatory effect of auxin IAA 
and synthetic plant growth regulators Methyur and Kamethur 
on the vegetative growth of wheat (Triticum aestivum L.) 
variety Svitlana was studied. The morphometric parameters 
of wheat plants grown from seeds treated with synthetic 
thienopyrimidine derivatives (compounds № 1 – 11, Table 1),
auxin IAA, and synthetic plant growth regulators Methyur 
and Kamethur at a concentration of 10-6M, measured after 

The content of chlorophyll a, chlorophyll b, and carotenoids 
(%) determined in experimental wheat leaves was calculated 
according to similar parameters determined in control wheat 
leaves.

Statistical data analysis 

Each experiment was performed three times. Statistical 
processing of the experimental data was carried out using 
Student’s t-test with a signi icance level of p ≤ 0.05; mean 
values ± standard deviation (± SD) [43]. 
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2 weeks were compared with similar parameters of control 
wheat plants grown from seeds treated with distilled water. 
The obtained results show that the growth-regulatory effect 
of new synthetic thienopyrimidine derivatives was similar to 
the growth-regulatory effect of auxin IAA or synthetic plant 
growth regulators Methyur and Kamethur (Figure 1). 

Increased growth and development of shoots and roots of 
wheat plants was observed for 2 weeks compared to control 
plants (Figure 1).

The parameters of the average length of shoots of 2-week-
old wheat plants grown from seeds treated with auxin IAA at a 
concentration of 10-6M, statistically signi icantly increased by 
32,67%, respectively, compared to control plants (Figure 2).

The parameters of the average length of shoots of 2-week-old 
wheat plants grown from seeds treated with plant growth 
regulator Methyur at a concentration of 10-6M, statistically 
signi icantly increased by 49,33%, respectively, compared 
to control plants (Figure 2). The parameters of the average 
length of shoots of 2-week-old wheat plants grown from 
seeds treated with plant growth regulator Kamethur at a 
concentration of 10-6M, statistically signi icantly increased by 
46,67%, respectively, compared to control plants (Figure 2). 
The parameters of the average length of shoots of 2-week-old 
wheat plants grown from seeds treated with the most active 
synthetic thienopyrimidine derivatives № 2, 3, 5, 7, 9 and 11 
at a concentration of 10-6M, statistically signi icantly increased 
by 33,33% – 45,33%, respectively, compared to control plants 

Figure 1: The regulatory effect of auxin IAA, synthetic plant growth regulators Methyur, Kamethur, and new synthetic thienopyrimidine derivatives 
(compounds № 1 – 11) at a concentration of 10-6M on the growth of shoots and roots of 2-week-old wheat (Triticum aestivum L.) variety Svitlana compared 
to control plants..

Figure 2: The regulatory effect of auxin IAA, synthetic plant growth regulators Methyur, Kamethur, and new synthetic thienopyrimidine derivatives 
(compounds № 1 – 11) at a concentration of 10-6M on the average length of shoots (mm) of 2-week-old wheat (Triticum aestivum L.) variety Svitlana 
compared to control plants. Note. **Signi icant differences from control values*, p ≤ 0.05, n = 3, the values are mean ± SD.
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(Figure 2). The parameters of the average length of shoots of 
2-week-old wheat plants grown from seeds treated with the 
less active synthetic thienopyrimidine derivatives № 4, 6, 8 
and 10 at a concentration of 10-6M, statistically signi icantly 
increased by 24% - 28%, respectively, compared to control 
plants (Figure 2). The parameters of the average length of 
shoots of 2-week-old wheat plants grown from seeds treated 
with the less active synthetic thienopyrimidine derivative № 
1 at a concentration of 10-6M, increased by 16,67%, but did not 
differ statistically signi icantly from control plants (Figure 2).

The parameters of the average length of roots of 2-week-
old wheat plants grown from seeds treated with auxin IAA at 
a concentration of 10-6M, statistically signi icantly increased 
by 75,51%, respectively, compared to control plants (Figure 
3). The parameters of the average length of roots of 2-week-
old wheat plants grown from seeds treated with plant growth 
regulator Methyur at a concentration of 10-6M, statistically 
signi icantly increased by 255,1%, respectively, compared 
to control plants (Figure 3). The parameters of the average 
length of roots of 2-week-old wheat plants grown from 
seeds treated with plant growth regulator Kamethur at a 
concentration of 10-6M, statistically signi icantly increased by 
132,65%, respectively, compared to control plants (Figure 3). 
The parameters of the average length of roots of 2-week-old 
wheat plants grown from seeds treated with the most active 
synthetic thienopyrimidine derivatives № 2 – 4, 6, 7, 9 and 11 
at a concentration of 10-6M, statistically signi icantly increased 
by 95,92% – 177,55%, respectively, compared to control 
plants (Figure 3). The parameters of the average length of 
roots of 2-week-old wheat plants grown from seeds treated 
with the less active synthetic thienopyrimidine derivatives 
№ 1, 5, 8 and 10 at a concentration of 10-6M, statistically 
signi icantly increased by 48,98% – 75,51 %, respectively, 
compared to control plants (Figure 3).

The parameters of the average biomass of 10 plants (g) 
of 2-week-old wheat plants grown from seeds treated with 
auxin IAA at a concentration of 10-6M, statistically signi icantly 
increased by 35,16%, respectively, compared to control plants 

(Figure 4). The parameters of the average biomass of 10 plants 
(g) of 2-week-old wheat plants grown from seeds treated with 
plant growth regulator Methyur at a concentration of 10-6M, 
statistically signi icantly increased by 81,31%, respectively, 
compared to control plants (Figure 4). The parameters of 
the average biomass of 10 plants (g) of 2-week-old wheat 
plants grown from seeds treated with plant growth regulator 
Kamethur at a concentration of 10-6M, statistically signi icantly 
increased by 71,43%, respectively, compared to control plants 
(Figure 4). The parameters of the average biomass of 10 plants 
(g) of 2-week-old wheat plants grown from seeds treated 
with the most active synthetic thienopyrimidine derivatives 
№ 3, 6, 7, 9 and 11 at a concentration of 10-6M, statistically 
signi icantly increased by 46,15% – 93,41%, respectively, 
compared to control plants (Figure 4). The parameters of 
the average biomass of 10 plants (g) of 2-week-old wheat 
plants grown from seeds treated with the less active synthetic 
thienopyrimidine derivatives № 1, 2 and 4, at a concentration 
of 10-6M, statistically signi icantly increased by 34,07% – 
42,86%, respectively, compared to control plants (Figure 4). 
The parameters of the average biomass of 10 plants (g) of 
2-week-old wheat plants grown from seeds treated with the 
less active synthetic thienopyrimidine derivatives № 5, 8 and 
10 at a concentration of 10-6M, increased by 14,29% – 20,88%, 
but did not differ statistically signi icantly from control plants 
(Figure 4).

Summarizing the obtained morphometric parameters 
of wheat plants (average length of shoots and roots (mm), 
average biomass of 10 plants (g)), it should be noted that new 
synthetic thienopyrimidine derivatives (compounds № 2, 3, 
6, 7, 9 and 11) showed the highest growth-regulatory effect, 
which was similar or higher than that of the auxin IAA or the 
synthetic plant growth regulators Methyur and Kamethur.

The regulatory effect of new synthetic thienopyrimidine 
derivatives (compounds № 1 – 11, Table 1), auxin IAA, and 
synthetic plant growth regulators Methyur and Kamethur 
at a concentration of 10-6M on the content of photosynthetic 
pigments (chlorophyll a, chlorophyll b, chlorophylls a+b, and 

Figure 3: The regulatory effect of auxin IAA, synthetic plant growth regulators Methyur, Kamethur, and new synthetic thienopyrimidine derivatives 
(compounds № 1 – 11) at a concentration of 10-6M on the average length of roots (mm) of 2-week-old wheat (Triticum aestivum L.) variety Svitlana compared 
to control plants. Note. **Signi icant differences from control values*, p ≤ 0.05, n = 3, the values are mean ± SD.
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carotenoids) in the leaves of 2-week-old wheat (Triticum 
aestivum L.) variety Svitlana was also studied. The content 
of photosynthetic pigments in the leaves of 2-week-old 
wheat plants grown from seeds treated with auxin IAA 
at a concentration of 10-6M, statistically signi icantly 
increased: chlorophyll a – by 67,72%, chlorophyll b - by 
89,7%, chlorophylls a+b - by 73,7%, carotenoids - by 56,7%, 
respectively, compared to control plants (Figure 5). The 
content of photosynthetic pigments in the leaves of 2-week-
old wheat plants grown from seeds treated with plant growth 
regulator Methyur at a concentration of 10-6M, statistically 
signi icantly increased: chlorophyll a – by 95,56 %, chlorophyll 
b - by 183,22%, chlorophylls a+b - by 119,42%, carotenoids 
- by 47,9%, respectively, compared to control plants (Figure 
5). The content of photosynthetic pigments in the leaves of 
2-week-old wheat plants grown from seeds treated with 
plant growth regulator Kamethur at a concentration of 10-

6M, statistically signi icantly increased: chlorophyll a - by 
54,25%, chlorophyll b - by 293,63%, chlorophylls a+b - by 
119,42%, respectively, compared to control plants (Figure 
5). The content of photosynthetic pigments in the leaves of 
2-week-old wheat plants grown from seeds treated with the 
most active synthetic thienopyrimidine derivatives № 2 – 8 at 
a concentration of 10-6M, statistically signi icantly increased: 
chlorophyll a - by 51,54% – 95,21%, chlorophyll b - by 
45,29% – 160,8%, chlorophylls a+b - by 49,84% – 113,07%, 
carotenoids - by 23,3% – 108,38%, respectively, compared 
to control plants (Figure 5). The content of photosynthetic 
pigments in the leaves of 2-week-old wheat plants grown 
from seeds treated with the less active synthetic 
thienopyrimidine derivatives № 1, 9, 10 and 11 at a 
concentration of 10-6M, statistically signi icantly increased: 
chlorophyll a – by 19,43% – 35,49%, chlorophyll b – by 
37,79% – 70,61%, chlorophylls a+b - by 26,72% – 36,67%, 
respectively, compared to control plants (Figure 5). The 
content of carotenoids in the leaves of 2-week-old wheat plants 
grown from seeds treated with synthetic thienopyrimidine 
derivative № 1 at a concentration of 10-6M, statistically 
signi icantly increased by 24,88%, respectively, compared 
to control plants (Figure 5). At the same time, the content of 

carotenoids in the leaves of 2-week-old wheat plants grown 
from seeds treated with plant growth regulator Kamethur and 
synthetic thienopyrimidine derivatives № 9, 10 and 11 at a 
concentration of 10-6M, did not differ statistically signi icantly 
from control plants (Figure 5).

Thus, the obtained results con irmed the positive 
regulatory effect of synthetic thienopyrimidine derivatives 
(compounds № 2 – 8) at a concentration of 10-6M on increasing 
the content of chlorophylls a, b, and carotenoids (μg/ml) in 
the leaves of 2-week-old wheat (Triticum aestivum L.) variety 
Svitlana, which play a key role in photosynthesis and ensuring 
plant productivity [41,42]. The regulatory effect of synthetic 
thienopyrimidine derivatives (compounds № 2 – 8) was 
similar to or higher than that of the auxin IAA or the synthetic 
plant growth regulators Methyur and Kamethur.

Analyzing the relationship between the chemical 
structure and biological activity of new most active synthetic 
thienopyrimidine derivatives № 2, 3, 5 – 9 and 11, it can be 
assumed that the high growth-regulatory effect of these 
compounds is associated with the presence of substituents in 
their chemical structure (Table 1): compound № 2 contains 
an allyl substituent in position 3, a phenylsulfonyl group in 
position 5 of the 2-thioxo-2,3-dihydro-1H-pyrimidin-4-one 
ring; compound № 3 contains a benzyl substituent in position 
5, a methyl group in position 6 of the 2-thioxo-2,3-dihydro-
1H-pyrimidin-4-one ring; compound № 5 contains a p-tolyl 
group in position 6, a cyano group in position 5 of the 4-oxo-
2-thioxo-1,2,3,4-tetrahydropyrimidine ring; compound № 6 
contains a phenyl group in position 6, a cyano group in position 
5 of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine ring; 
compound № 7 contains a methylsulfanyl group in position 
2, a p-tolyl group in position 4, and a cyano group in position 
5 of the 6-oxo-1,6-dihydropyrimidine ring; compound № 
8 contains a methyl group in position 6, a phenyl group in 
position 4, and an ethoxycarbonyl group in position 5 of the 
2-thioxo-1,2,3,4-tetrahydropyrimidine ring; compound № 
9 contains a methyl group in position 6, a 4-methoxyphenyl 
group in position 4, and an ethoxycarbonyl group in position 5 
of the 2-thioxo-1,2,3,4-tetrahydropyrimidine ring; compound 

Figure 4: The regulatory effect of auxin IAA, synthetic plant growth regulators Methyur, Kamethur, and new synthetic thienopyrimidine derivatives 
(compounds № 1 – 11) at a concentration of 10-6M on the average biomass of 10 plants (g) of 2-week-old wheat (Triticum aestivum L.) variety Svitlana 
compared to control plants. Note. **Signi icant differences from control values*, p ≤ 0.05, n = 3, the values are mean ± SD.
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№ 11 contains a methyl group in position 6, a 4-hydroxyphenyl 
group in position 4, and an ethoxycarbonyl group in position 5 
of the 2-thioxo-1,2,3,4-tetrahydropyrimidine ring.

At the same time, the decrease in the growth-regulatory 
effect of synthetic thienopyrimidine derivatives № 1, 4, and 
10 can be explained by the presence of substituents in the 
chemical structures of these compounds (Table 1): compound 
№ 1 contains a benzenesulfonyl group in position 5, an ethyl 
group in position 3 of the 2-thioxo-2,3-dihydro-1H-pyrimidin-
4-one ring; compound № 4 contains a phenyl group in position 
3, a benzenesulfonyl group in position 5 of the 2-thioxo-2,3-
dihydro-1H-pyrimidin-4-one ring; compound № 10 contains a 
methyl group in position 6, a 4-methoxycarbonylphenyl group 
in position 4, and an ethoxycarbonyl group in position 5 of the 
2-thioxo-1,2,3,4-tetrahydropyrimidine ring.

Summarizing the obtained morphometric and 
biochemical parameters of wheat plants, it should be noted 
that the regulatory effect of the new most active synthetic 
thienopyrimidine derivatives № 2, 3, 5 – 9, and 11 were 
similar or higher than that of the auxin IAA or the synthetic 
plant growth regulators Methyur and Kamethur. 

Based on data from studying the physiological and 
molecular mechanisms of signal transduction of natural 
auxins and cytokinins and their synthetic physiological 
analogues, it can be assumed that the growth-regulating effect 
of thienopyrimidine derivatives is explained by both their 
in luence on the pathways of perception and transmission 
of natural auxin and cytokinin signals and their in luence on 
the pathways of biosynthesis, metabolism, and transport of 
natural auxins and cytokinins in plant cells, which regulate the 
growth and development of plant shoots and roots and also 
slow down the degradation of chlorophylls and carotenoids in 
plant cells [1-13,44-60].

Conclusion
The obtained results con irmed the possibility of 

practical use of the most active thienopyrimidine derivatives 
(compounds № 2, 3, 5 – 9, and 11) at a concentration of 10-

6M as new synthetic physiological analogues of auxins and 
cytokinins for the regulation of growth and development of 
wheat (Triticum aestivum L.) variety Svitlana in the vegetative 
phase and increasing the content of photosynthetic pigments 
in plant leaves, which ensure plant productivity.
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