Abstract

Mini Review

Antifungal activity of epecific plant essential oils against fusarium graminearum

Emre Yörük*, Esma Özsoy and Buket Kesercan

Published: 31 October, 2020 | Volume 4 - Issue 3 | Pages: 060-062

fusarium graminearum is one of the most popular phytopathogens of cereals worldwide. F. graminearum is the major causal agent of head blight of wheat and barley. Disease-resistant cultivar development, antagonistic microorganism usage and fungicide treatment are the most common strategies in head blight management strategies. However, these methods have some important disadvantages. The use of plant-derived essential oil against F. graminearum seems to be a promising approach due to the recent researches. This review summarizes the potential use of essential oils to fight against F. graminearum.

Read Full Article HTML DOI: 10.29328/journal.jpsp.1001052 Cite this Article Read Full Article PDF

References

  1. Özer N, Soran H. Fusarium species of Turkey. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. 1991; 6: 259-271.
  2. Goswami RS, Kistler HC. Heading for disaster: fusarium graminearum on cereal crop. Mol Plant Pathol. 2004; 5: 515-525. PubMed: https://pubmed.ncbi.nlm.nih.gov/20565626/
  3. Yli-Mattila T, Rämö S, Hietaniemi V, Hussien T, Carlobos-Lopez A, et al. Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms. 2013; 1: 162-174.
  4. Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol. 1995; 44: 207-238.
  5. Windels CE. Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology. 2000; 90: 17-21. PubMed: https://pubmed.ncbi.nlm.nih.gov/18944567/
  6. Matny ON. Fusarium head blight and crown rot on wheat & barley: losses and health risks. Adv Plants Agric Res. 2015; 2: 00039.
  7. Desjardins AE, Proctor RH. Molecular biology of Fusarium mycotoxins. Int J Food Microbiol. 2007; 119: 47-50. PubMed:https://pubmed.ncbi.nlm.nih.gov/17707105/
  8. Trail F. For blighted waves of grain: fusarium graminearum in the postgenomics era. Plant Physiol. 2009; 49: 103-110. PubMed: https://pubmed.ncbi.nlm.nih.gov/19126701/
  9. Dal Bello GM, Monaco CI, Simon MR. Biological control of seedling blight of wheat caused by fusarium graminearum with beneficial rhizosphere microorganisms. World J Microbiol Biotechnol. 2002; 18: 627-636.
  10. Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog. 2009; 5: e1000696. PubMed: https://pubmed.ncbi.nlm.nih.gov/20019793/
  11. Qiana H, Dub J, Chia M, Sunc X, Lianga W, et al. The Y137H mutation in the FgCYP51B protein confers reduced sensitivity to tebuconazole in fusarium graminearum. Pest Manag Sci. 2018; 74:1472-1477. PubMed: https://pubmed.ncbi.nlm.nih.gov/29274114/
  12. Huang C, Gangola MP, Ganeshan S, Hucl P, Kutcher HR, et al. Spike culture derived wheat (Triticum aestivum L.) variants exhibit improved resistance to multiple chemotypes of fusarium graminearum. Plos One, 2019; 14: e0226695.
  13. Demissie ZA, Witte T, Robinson KA, Sproule A, Foote SJ, et al. Transcriptomic and Exometabolomic Profiling Reveals Antagonistic and Defensive Modes of Clonostachys rosea Action Against fusarium graminearum. Mol Plant-Microbe Interact. 2020; 33: 842-858. PubMed: https://pubmed.ncbi.nlm.nih.gov/32116115/
  14. Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci. 2002; 58: 859-867. PubMed: https://pubmed.ncbi.nlm.nih.gov/12233175/
  15. Brent KJ, Hollomon DW. ‘The Future’, Brussels: GIFAP, Fungicide resistance in crop pathogens: how can it be managed?, 1995; 48.
  16. Talas F, McDonald BA. Genome-wide analysis of fusarium graminearum field populations reveals hotspots of recombination. BMC Genomics. 16: 996.
  17. Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, et al. Natural products–antifungal agents derived from plants. JANPR. 2009; 11: 621-638. PubMed: https://pubmed.ncbi.nlm.nih.gov/20183299/
  18. Sefer Ö, Yörük E, Develi ES, Zümrüt IM, Sezer AS, et al. Kaempferol’ün Başak Yanıklığı Etmeni Fusarium culmorum’un Üremesi ve Toksin Üretimi Üzerine Olan Etkileri, SDÜ Ziraat Fakültesi Dergisi. 2017; 12: 24-33.
  19. Gazdağlı A, Sefer Ö, Yörük E, Varol Gİ, Teker T, et al. Investigation of camphor effects on fusarium graminearum and F. culmorum at different molecular levels. Pathogens. 2018; 7: 90.
  20. Yörük E, Sefer Ö, Sezer AS, Konukcu Z, Develi ES. Eugenol’ün Fusarium culmorum üzerindeki etkilerinin incelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 8: 215-221.
  21. Ibrahim GS, Kiki MJ. Chemical Composition, Antifungal and Antioxidant Activity of Some Spice Essential Oils. Int J Life Sci Pharma Res. 2020; 10: 43-50.
  22. Mohamed AA, Behiry SI, Ali HM, EL-Hefny M, Salem MZ, et al. Phytochemical compounds of branches from P. halepensis oily liquid extract and S. terebinthifolius essential oil and their potential antifungal activity. Processes. 2020; 8: 330.
  23. Chung WH, Ishii H, Nishimura K, Ohshima M, Iwama T, et al. Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. JGPP. 74: 364-374.

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?